Skip to main content
Log in

On the release of cytochromec from mitochondria during cell death signaling

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Mitochondria play key roles in apoptosis, a central step being the release of cytochromec (cyt c) across the outer mitochondrial membrane into the cytoplasm. We review this process in terms of the influences that induce mitochondria to release cyt c, the possible mechanisms of such release and the downstream consequences for caspase activation. The contributions of members of the Bcl-2 family in regulating mitochondrial activities relevant to apoptotic signaling are considered. Antiapoptotic members, such as Bcl-2 itself, are antagonistic to other family members, which prominently include Bax amongst a host of other proapoptotic proteins homologous to Bcl-2. Focus is placed on technical methods of determining cyt c release, which encompass cell fractionation, biochemistry, immunochemistry and confocal microscopy [including observations of release in real time using cyt c-green fluorescent protein (GFP) fusion proteins]. The advantages and potential pitfalls of the various approaches are discussed, with some emphasis on the use of cyt c-GFP fusions and the determination of the characteristics of the putative outer membrane pore through which cyt c and other mitochondrial proteins with proapoptotic functions may pass. The richness of this field relating to mitochondria and cell death is brought out by consideration of studies carried out in mammalian and yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66;2001.

    Article  PubMed  Google Scholar 

  2. Adrain C, Creagh EM, Martin SJ. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20:6627–6636;2001.

    Article  PubMed  Google Scholar 

  3. Adrain C, Martin SJ. The mitochondrial apoptosome: A killer unleashed by the cytochrome seas. Trends Biochem Sci 26:390–397;2001.

    Article  PubMed  Google Scholar 

  4. Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res 256:50–57;2000.

    Article  PubMed  Google Scholar 

  5. Basanez G, Nechushtan A, Drozhinin O, Chanturiya A, Choe E, Tutt S, Wood KA, Hsu Y-T, Zimmerberg J, Youle RJ. Bax, but not Bcl-XL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad Sci USA 96:5492–5497;1999.

    Article  PubMed  Google Scholar 

  6. Bernardi P, Basso E, Colonna R, Costantini P, Di Lisa F, Eriksson O, Fontaine E, Forte M, Ichas F, Massari S, Nicolli A, Petronilli V, Scorrano L. Perspectives on the mitochondrial permeability transition. Biochim Biophys Acta 1365:200–206;1998.

    Google Scholar 

  7. Bernardi P, Petronilli V, Lisa FD, Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci 26:112–117;2001.

    Article  PubMed  Google Scholar 

  8. Beutner G, Ruck A, Riede B, Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368:7–18;1998.

    PubMed  Google Scholar 

  9. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49;1998.

    Article  Google Scholar 

  10. Brustugun OT, Fladmark KE, Doskeland SO, Orrenius S, Zhivotovsky B. Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Cell Death Differ 5:660–668;1998.

    Article  PubMed  Google Scholar 

  11. Chai J, Du C, Wu J-W, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862;2000.

    Article  PubMed  Google Scholar 

  12. Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM. Bax independent inhibition of apoptosis by Bcl-XL. Nature 379:554–556;1996.

    Article  PubMed  Google Scholar 

  13. Chinnaiyan AM, O'Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death. Science 275:1122–1126;1997.

    Article  PubMed  Google Scholar 

  14. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249;1999.

    Article  PubMed  Google Scholar 

  15. Desagher S, Martinou J-C. Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377;2000.

    Article  PubMed  Google Scholar 

  16. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou J-C. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901;1999.

    Article  PubMed  Google Scholar 

  17. Deveraux QL, Reed JC. IAP family of proteins — suppressors of apoptosis. Genes Dev 12:239–252;1999.

    Google Scholar 

  18. Diekert K, de Kroon AIPM, Ahting U, Niggemeyer B, Neupert W, de Kruijff B, Lill R. Apocytochrome c requires the TOM complex for translocation across the mitochondrial outer membrane. EMBO J 20:5626–5635;2001.

    Article  PubMed  Google Scholar 

  19. Downward J. How BAD phosphorylation is good for survival. Nat Cell Biol 1:E33-E35;1999.

    Article  PubMed  Google Scholar 

  20. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42;2000.

    Article  Google Scholar 

  21. Dumont ME, Cardillo TS, Hayes MK, Sherman F. Role of cytochrome c heme lyase in mitochondrial import and accumulation of cytochrome c inSaccharomyces cerevisiae. Mol Cell Biol 11:5487–5496;1991.

    PubMed  Google Scholar 

  22. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou J-C. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:217–224;1998.

    Article  PubMed  Google Scholar 

  23. Eskes R, Desagher S, Antonsson B, Martinou J-C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935;2000.

    Article  PubMed  Google Scholar 

  24. Finkel E. The mitochondrion: Is it central to apoptosis? Science 292:624–626;2001.

    Article  PubMed  Google Scholar 

  25. Frey TG, Mannella CA. The internal structure of mitochondria. Trends Biochem Sci 25:319–324;2000.

    Article  PubMed  Google Scholar 

  26. Gogvadze V, Robertson JD, Zhivotovsky B, Orrenius S. Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax. J Biol Chem 276:19066–19071;2001.

    Article  PubMed  Google Scholar 

  27. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162;2000.

    PubMed  Google Scholar 

  28. Gotow T, Shibata M, Kanamori S, Tokuno O, Ohsawa Y, Sato N, Isahara K, Yayoi Y, Watanabe T, Leterrier JF, Linden M, Kominami E, Uchiyama Y. Selective localization of Bcl-2 to the inner mitochondrial and smooth endoplasmic reticulum membranes in mammalian cells. Cell Death Differ 7:666–674;2000.

    Article  PubMed  Google Scholar 

  29. Graham JM. Homogenization of tissues and cells. In: Graham JM, Rickwood D, eds. Subcellular Fractionation: A Practical Approach. New York, Oxford University Press, 1–28;1997.

    Google Scholar 

  30. Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 17:3878–3885;1998.

    Article  PubMed  Google Scholar 

  31. Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ, Forte M. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCLX(L). Mol Cell Biol 20:3125–3126;2000.

    Article  PubMed  Google Scholar 

  32. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163;1999.

    Google Scholar 

  33. Heiskanen KM, Bhat MB, Wang H-W, Ma J, Nieminen A-L. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J Biol Chem 274:5654–5658;1999.

    Google Scholar 

  34. Hsu Y-T, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc Natl Acad Sci USA 94:3668–3672;1997.

    Article  PubMed  Google Scholar 

  35. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 95:4386–4391;1998.

    Google Scholar 

  36. Ichas F, Mazat J-P. From calcium signaling to cell death: Two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366:33–50;1998.

    PubMed  Google Scholar 

  37. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95:4997–5002;1998.

    Article  Google Scholar 

  38. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136;1997.

    PubMed  Google Scholar 

  39. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53:4701–4714;1993.

    PubMed  Google Scholar 

  40. Kudla G, Montessuit S, Eskes R, Berrier C, Martinou J-C, Ghazi A, Antonsson B. The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved Bid is inhibited by the N-terminal fragment. J Biol Chem 275:22713–22718;2000.

    Article  PubMed  Google Scholar 

  41. Kuida K, Haydar TF, Kuan C-Y, Gu Y, Taya C, Karasuyama H, Su MS-S, Rakic P, Flavell RA. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337;1998.

    Article  PubMed  Google Scholar 

  42. Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101:389–399;2000.

    Article  PubMed  Google Scholar 

  43. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489;1997.

    Article  Google Scholar 

  44. Lim MLR, Minamikawa T, Nagley P. The protonophore CCCP induces mitochondrial permeability transition without cytochrome c release in human osteosarcoma cells. FEBS Lett 503:69–74;2001.

    Article  PubMed  Google Scholar 

  45. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86:147–157;1996.

    Article  PubMed  Google Scholar 

  46. Lorenzo HK, Susin SA, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6:516–524;1999.

    Article  PubMed  Google Scholar 

  47. Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, Herman B. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol 16:547–552;1998.

    PubMed  Google Scholar 

  48. Manon S, Chaudhuri B, Guerin M. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-XL. FEBS Lett 415:29–32;1997.

    PubMed  Google Scholar 

  49. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160;1996.

    PubMed  Google Scholar 

  50. Martinou J-C, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67;2001.

    Article  PubMed  Google Scholar 

  51. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HLA, Prevost M-C, Xie Z, Matsuyama S, Reed JC, Kroemer G. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031;1998.

    PubMed  Google Scholar 

  52. Mayer A, Neupert W, Lill R. Translocation of apocytochrome c across the outer membrane of mitochondria. J Biol Chem 270:12390–12397;1995.

    Google Scholar 

  53. Minamikawa T, Sriratana A, Williams DA, Bowser DN, Hill JS, Nagley P. Chloromethyl-X-rosamine (MitoTracker Red) photosensitizes mitochondria and induces apoptosis in intact human cells. J Cell Sci 112:2419–2430;1999.

    PubMed  Google Scholar 

  54. Minamikawa T, Williams DA, Bowser DN, Nagley P. Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. Exp Cell Res 246:26–37;1999.

    PubMed  Google Scholar 

  55. Minn AJ, Kettlun CS, Liang H, Kelekar A, vander Heiden MG, Chang BS, Fesik SW, Fill M, Thompson CB. Bcl-XL regulates apoptosis by heterodimerization-dependent and -independent mechanisms. EMBO J 18:632–643;1999.

    PubMed  Google Scholar 

  56. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW. X-ray and NMR structure of human Bcl-XL, an inhibitor of programmed cell death. Nature 381:335–341;1996.

    Article  PubMed  Google Scholar 

  57. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686;1998.

    Article  PubMed  Google Scholar 

  58. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis inXenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79:353–364;1994.

    Article  Google Scholar 

  59. Nguyen M, Branton PE, Walton PA, Oltvai ZN, Korsmeyer SJ, Shore GC. Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J Biol Chem 269:16521–16524;1994.

    Google Scholar 

  60. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619;1993.

    PubMed  Google Scholar 

  61. Pastorino JG, Chen S-T, Tafani M, Snyder JW, Farber JL. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273:7770–7775;1998.

    Google Scholar 

  62. Pastorino JG, Tafani M, Rothman RJ, Marcineviciute A, Hoek JB, Farber JL. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J Biol Chem 274:31734–31739;1999.

    Article  PubMed  Google Scholar 

  63. Patterson SD, Spahr CS, Daugas E, Susin SA, Irinopoulou T, Koehler C, Kroemer G. Mass spectrometric identification of protein released from mitochondria undergoing permeability transition. Cell Death Differ 7:137–144;2000.

    PubMed  Google Scholar 

  64. Pavlov EV, Priault M, Pietkiewicz D, Cheng EH-Y, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW. A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155:725–731;2001.

    Article  PubMed  Google Scholar 

  65. Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N, Kroemer G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: The impact of irreversible permeability transition. FEBS Lett 426:111–116;1998.

    PubMed  Google Scholar 

  66. Priault M, Camougrand N, Chaudhuri B, Schaeffer J, Manon S. Comparison of the effects of bax-expression in yeast under fermentative and respiratory conditions: Investigation of the role of adenine nucleotides carrier and cytochrome c. FEBS Lett 456:232–238;1999.

    Article  PubMed  Google Scholar 

  67. Priault M, Chaudhuri B, Clow A, Camougrand N, Manon S. Investigation of bax-induced release of cytochrome c from yeast mitochondria: Permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur J Biochem 260:684–691;1999.

    PubMed  Google Scholar 

  68. Puthalakath H, Huang DCS, O'Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3:287–296;1999.

    Article  PubMed  Google Scholar 

  69. Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391:496–498;1998.

    Article  PubMed  Google Scholar 

  70. Roucou X, Prescott M, Devenish RJ, Nagley P. A cytochrome c-GFP fusion is not released from mitochondria into the cytoplasm upon expression of Bax in yeast cells. FEBS Lett 471:235–239;2000.

    PubMed  Google Scholar 

  71. Saito M, Korsmeyer SJ, Schlesinger PH. Bax-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2:553–555;2000.

    Article  PubMed  Google Scholar 

  72. Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274:17941–17945;1999.

    Article  PubMed  Google Scholar 

  73. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 407:784–788;2000.

    Article  PubMed  Google Scholar 

  74. Scarlett JL, Murphy MP. Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Lett 418:282–286;1997.

    PubMed  Google Scholar 

  75. Schendel SL, Montal M, Reed JC. Bcl-2 family proteins as ion-channels. Cell Death Differ 5:372–380;1998.

    Article  PubMed  Google Scholar 

  76. Schlesinger PH, Gross A, Yin X-M, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 94:11357–11362;1997.

    Article  PubMed  Google Scholar 

  77. Scorrano L, Petronilli V, Di Lisa F, Bernardi P. Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J Biol Chem 274:22581–22585;1999.

    Google Scholar 

  78. Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci USA 95:1455–1459;1998.

    Google Scholar 

  79. Shimizu S, Ide T, Yanagida Y, Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275:12321–12325;2000.

    Google Scholar 

  80. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487;1999.

    Article  PubMed  Google Scholar 

  81. Srinivasula SM, Hedge R, Saleh A, Pinaki D, Shiozaki E, Chai J, Lee R-A, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116;2001.

    Article  PubMed  Google Scholar 

  82. Strasser A, O'Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 69:217–245;2000.

    Article  PubMed  Google Scholar 

  83. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189:381–393;1999.

    Article  PubMed  Google Scholar 

  84. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446;1999.

    Article  Google Scholar 

  85. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341;1996.

    Article  PubMed  Google Scholar 

  86. Tanaka S, Saito K, Reed JC. Structure-function analysis of the Bcl-2 oncoprotein. Addition of a heterologous transmembrane domain to portions of the Bcl-2 beta protein restores function as a regulator of cell survival. J Biol Chem 268:10920–10926;1996.

    Google Scholar 

  87. Unkila M, McColl KS, Thomenius MJ, Heiskanen K, Distelhorst CW. Unreliability of the cytochrome c-enhanced green fluorescent fusion protein as a marker of cytochrome c release in cells that overexpress Bcl-2. J Biol Chem 276:39132–39137;2001.

    Google Scholar 

  88. vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3:159–167;1999.

    Article  PubMed  Google Scholar 

  89. vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB. Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637;1997.

    PubMed  Google Scholar 

  90. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53;2000.

    Article  Google Scholar 

  91. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153:319–328;2001.

    Article  PubMed  Google Scholar 

  92. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071;2000.

    PubMed  Google Scholar 

  93. Wei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292:727–730;2001.

    Google Scholar 

  94. Wolter KG, Hsu Y-T, Smith CL, Nechushtan A, Xi X-G, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292;1997.

    Article  PubMed  Google Scholar 

  95. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T-I, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129–1132;1997.

    Google Scholar 

  96. Yoshida H, Kong Y-Y, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750;1998.

    Article  PubMed  Google Scholar 

  97. Zamzami N, Kroemer G. The mitochondrion in apoptosis: How Pandora's box opens. Nat Rev Mol Cell Biol 2:67–71;2001.

    Article  Google Scholar 

  98. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med 183:1293–1295;1996.

    Article  PubMed  Google Scholar 

  99. Zha H, Aime-Sempe C, Sato T, Reed JC. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 271:7440–7444;1996.

    Google Scholar 

  100. Zhang C, Sriratana A, Minamikawa T, Nagley P. Photosensitisation properties of mitochondrially localised green fluorescent protein. Biochem Biophys Res Commun 242:390–395;1998

    PubMed  Google Scholar 

  101. Zhivotovsky B, Orrenius S, Brustugun OT, Doskeland SO. Injected cytochrome c induces apoptosis. Nature 391:449–450;1998.

    Article  PubMed  Google Scholar 

  102. Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW. Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 15:4130–4141;1996.

    PubMed  Google Scholar 

  103. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous toC. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413;1997.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, M.L.R., Lum, MG., Hansen, T.M. et al. On the release of cytochromec from mitochondria during cell death signaling. J Biomed Sci 9, 488–506 (2002). https://doi.org/10.1007/BF02254976

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254976

Key Words

Navigation