Skip to main content
Log in

Scale effect of Young's modulus of highly oriented polymers

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The scale effect of the acoustic Young's modulus E of oriented polymer fibers has been experimentally revealed. If the fiber length L is smaller than its critical value L0, the modulus decreases proportionally to the logarithm of the fiber length. An increasing temperature causes a proportional increase in the slope dE/d(In L). The scale effect is explained by the influence of the specimen volume on the probability of initiation of intense thermal fluctuations, which cause a decline in the Young's modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Bronnikov, V. I. Vettegren', L. N. Korzhavin, and S. Ya. Frenkel', “Temperature dependence of the strength and Young's modulus of oriented polyimide fibers,” Mekh. Kompoz. Mater., No. 5, 920–923 (1983).

    Google Scholar 

  2. S. V. Bronnikov, V. I. Vettegren', L. N. Korzhavin, and S. Ya. Frenkel', “Temperature-time dependence of the Young's modulus of oriented polymers,” Vysokomol. Soed.,28A, No. 9, 1963–1970 (1970).

    Google Scholar 

  3. V. I. Vettegren', S. V. Bronnikov, L. N. Korzhavin, and S. Ya. Frenkel', “New approach to the description of Young's modulus for highly oriented polymers. 1. Temperature-time dependences of Young's modulus,” J. Macromolec. Sci.-Phys.,29B, No. 4, 285–302 (1990).

    Google Scholar 

  4. S. V. Bronnikov, V. I. Vettegren', and S. Ya. Frenkel', “Kinetics of deformation and relaxation in highly oriented polymers,” Adv. Polym. Sci.,25, 103–146 (1996).

    Google Scholar 

  5. A. Krausz and H. Eyring, Deformation Kinetics, Wiley and Sons, New York (1975).

    Google Scholar 

  6. V. A. Bernshtein and V. M. Egorov, Differential Scanning Calorimetry in the Polymer Physical Chemistry [Russian translation], Khimiya, Leningrad (1990).

    Google Scholar 

  7. S. V. Bronnikov, V. I. Vettegren', and S. Ya. Frenkel', “A new approach to the description of the deformation kinetics and relaxation of mechanical properties of oriented polymers,” Mech. Compos. Mater.,29, No. 4, 328–333 (1993).

    Google Scholar 

  8. V. R. Regel', A. I. Slutsker, and A. E. Tomashevskii, The Kinetic Nature of the Strength of Solids [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  9. V. A. Stepanov, N. N. Peschanskaya, and V. V. Shpeizman, Strength and Relaxation Effects in Solids [in Russian], Nauka, Leningrad (1984).

    Google Scholar 

  10. S. N. Zhurkov, “Dilation mechanism of the strength of Solids,” Fiz. Tverd. Tela,25, No. 10, 3119–3123 (1983).

    Google Scholar 

  11. V. I. Vettegren', “Determination of the activation energy and time for the formation of dialtons in polymers,” Fiz. Tverd. Tela,28, No. 11, 3417–3422 (1986).

    Google Scholar 

  12. V. A. Petrov, “Effects of thermofluctuational destruction,” Fiz. Tverd. Tela,18, No. 5, 1290–1298 (1976).

    Google Scholar 

  13. V. A. Petrov and A. V. Savitskii, “The thermofluctuational nature of dimensional effect of strength,” Dokl. Akad. Nauk SSSR,224, No. 4, 806–809 (1975).

    Google Scholar 

  14. S. V. Bronnikov, V. I. Vettegren', N. S. Kalbina, L. N. Korzhavin, and S. Ya. Frenkel', “On the statistical scatter of values of Young's modulus of polymers as a manifestation of the thermofluctuational nature,” Vysokomol. Soed.,29A, No. 12, 2637–2644 (1987).

    Google Scholar 

  15. V. A. Petrov and A. N. Orlov, “The thermofluctuational nature of a scatter of durability of solids under loading,” Fiz. Tverd. Tela,17, No. 3, 787–794 (1975).

    Google Scholar 

  16. A. P. Aleksandrov and S. N. Zhurkov, A Phenomenon of Brittle Fracture [in Russian], Tekhizdat, Moscow-Leningrad (1933).

    Google Scholar 

  17. S. N. Zhurkov, “Effect of increased strength of thin filaments,” Zh. Tekh. Fiz.,4, No. 12, 1640–1648 (1934).

    Google Scholar 

  18. I. M. Ward, “The preparation, structure, and properties of ultra-high modulus flexible polymers,” Adv. Polym. Sci.,70, 1–70 (1985).

    Google Scholar 

  19. J. P. Penning, R. Lagcher, and A. J. Pennings, “The effect of diameter on mechanical properties of amorphous carbon fibres from linear low density polyethylene,” Polym. Bull.,25, No. 3, 405–412 (1991).

    Google Scholar 

  20. L. P. Kobets, “Investigation of the stability of physicomechanical properties of carbon fibers. 1. Dependence of Young's modulus on the cross-sectional area of the fiber,” Polym. Mech.,11, No. 3, 365–370 (1975).

    Google Scholar 

  21. G. M. Mikhailov, N. V. Bobrova, M. F. Lebedeva, Yu. G. Baklagina, T. A. Maricheva, and T. E. Sukhanova, “Chemical structure, morphology, and properties of fibers based on modified polypyromellitimide,” Zh. Prikl. Khim.,67, No. 12, 2027–2031 (1994).

    Google Scholar 

  22. I. I. Perepechko, Acoustic Methods of Investigation of Polymers [in Russian], Khimiya, Moscow (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 6, pp. 839–846, November–December, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronnikov, S.V., Kuzmicheva, O.S. & Vettegren, V.I. Scale effect of Young's modulus of highly oriented polymers. Mech Compos Mater 34, 595–600 (1998). https://doi.org/10.1007/BF02254670

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254670

Keywords

Navigation