Skip to main content
Log in

Flexible composites, strength, deformation, and fracture processes. 1. Reinforcement structures and tensile strength

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

Fiber-reinforced flexible composites are extensively used for different kinds of applications, for example, tubes, drive belts, tires, and coated fabrics. Typical for these materials are matrix materials allowing large strain deformation and reinforcement structures allowing bending. Apart from the tensile strength and limited bending stiffness, damage resistance and ductile-brittle transition characteristics are discussed. The tensile strength usually follows the rule of mixture. The mode of fracture and damage resistance, however, strongly depend on penetration of the matrix into the fiber bundles, textile structure, and internal friction. Models for the work of fracture and the ductile-to-brittle fracture transition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gredinger, Fracture Modelling and Analysis of Processes in Coated Fabrics, M. Sci. Thesis, Lund University, Lund (1997).

    Google Scholar 

  2. C.-H. Andersson and T. Dartman, Analysis of Tensile Stiffness, Damage Resistance and Strength of Flexible Textile Composites, TEFO TTT-Internal Report, Göteborg (1990).

  3. C.-H. Andersson, Skadetålighet och rivhållfasthet hos belagda dukvaror 1-grundläggande mekanismer, TEFO TTT-Internal Report [in Swedish], Göteborg (1996).

  4. Bin Ahmad and M. F. Ashby, “Failure-mechanism maps for engineering polymers,” J. Mater. Sci.,23, 2037–2050 (1988).

    Google Scholar 

  5. Tsu-Wei Chou, “Review, flexible composites,” J. Mater. Sci.,24, 761–783 (1989).

    Google Scholar 

  6. V. K. Hewinson, “A study of coating-to-fabric adhesion and the tearing of coated nylon fabrics,” J. Text. Inst.,53, 766–782 (1962).

    Google Scholar 

  7. S. Kawabata, “Measurements of the transverse mechanical properties of high-performance fibers,” J. Text. Inst.,81, 432–447 (1990).

    Google Scholar 

  8. Frank K. Ko, “Preform fiber architecture for ceramic-matrix composites,” Ceram. Bull.,68, No. 2 (1989).

  9. John E. Masters, “Basic failure modes of continuous fiber composites,” in: Eng. Materials Handbook, Composites. Vol. 1, ASM Int., Metals Park, Ohio (1987), pp. 781–785.

    Google Scholar 

  10. S. Backer, “Fibrous materials,” in: Frank A. McClintock, Ali S. Argon (eds.), Mechanical Behaviour of Materials, Addison-Wesley Publ. Reading, Mass. (1966), pp. 675–705.

    Google Scholar 

  11. N. J. Abbott, T. E. Lannerfield, L. Barrish, and R. J. Brysson, “A study of tearing in coated cotton fabrics. Pt. I: The influence of fabric construction,” in: Coated Fabrics Technology, Technomic Publishing Inc., Westport (1973), pp. 1–14.

    Google Scholar 

  12. E. D. Frederick and M. C. Henry, “A study of tearing in coated cotton fabrics. Pt. II: The influence of coating techniques,” in: Coated Fabrics Technology, Technomic Publishing Inc., Westport (1973), pp. 15–62.

    Google Scholar 

  13. N. J. Abbott, T. E. Lannerfield, L. Barrish, and R. J. Brysson, “A study of tearing in coated cotton fabrics, Pt. III: The influence of coating application techniques,” in: Coated Fabrics Technology, Technomic Publishing Inc., Westport (1973), pp. 89–108.

    Google Scholar 

  14. N. J. Abbott and J. Skelton, “Crack propagation in woven fabrics,” in: Coated Fabrics Technology, Technomic Publishing Inc., Westport (1973), pp. 121–139.

    Google Scholar 

  15. T. C. Kennedy, “Application of composite fracture models to coated fabrics,” J. Coat. Fab.,24, 129–136 (1994).

    Google Scholar 

  16. T. Dartman and R. Shishoo, “Studies of adhesion mechanisms between PVC coating and different textile substrates,” J. Coat. Fab.,22, 317–334 (1993).

    Google Scholar 

  17. D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge (1981).

    Google Scholar 

  18. L. R. G. Treloar and G. Riding, “A theory of the stress-strain properties of continuous-filament yarns,” J. Text. Inst.,54 T156-T170 (1963).

    Google Scholar 

  19. J. W. S. Hearle, “On the theory of mechanism of twisted yarns,” J. Text. Inst.,60, 95–101 (1969).

    Google Scholar 

  20. J. W. S. Hearle, H. M. A. E. El-Behery, and V. M. Thakur, “The mechanics of twisted yarns: theoretical developments,” J. Text. Inst.,52, T197-T220 (1961).

    Google Scholar 

  21. J. W. S. Hearle, “The mechanics of twisted yarns: the influence of transverse forces on tensile behaviour,” J. Text. Inst.,49, T389-T408 (1958).

    Google Scholar 

  22. E. R. Kaswell, Wellington Sears Handbook of Industrial Textiles, Wellington Sears Company, Inc., New York (1963).

    Google Scholar 

  23. T.-W. Chou and F. K. Ko, Textile Structural Composites. Vol. 3, Compos. Mater. Series, Elsevier Inc., Amsterdam (1989).

    Google Scholar 

  24. X. Tao, “Mechanical properties of a migrating fiber,” Text. Res. J.,66, 754–762 (1996).

    Google Scholar 

  25. Peter Schwarz, Structural Design, Cornell Univ., Ithaca, New York (1996).

    Google Scholar 

  26. B. von Falkai, Synthesefasern-Grundlagen, Technologie, Verarbeitung und Anwendung, Verlag Chemie Gmbh., Weinheim (1981).

    Google Scholar 

  27. H. H. Yang, Kevlar Aramide Fibre, John Wiley & Sons, Ltd., (1993).

  28. W. E. Morton and J. W. S. Hearle, Physical Properties of Textile Fibres, Butterworth & Co. Ltd., The Textile Institute, Manchester (1962).

    Google Scholar 

  29. R. J. Young and W.-E. Yeh, “Chain stretching in a poly(ethylene terephthalate) fiber,” Polymer,35, No. 18, 3844–3847 (1994).

    Google Scholar 

  30. M. C. Andrews, D. Lu, and R. J. Young, “Compressive properties of aramide fibers,” Polymer,38, No. 10, 2379–2388 (1997).

    Google Scholar 

  31. T. Czinganzy and J. Karger-Kocsis, “Determination of the damage zone size in textile reinforced polypropylene composites by locating the acoustic emission,” Polymers Polym. Compos.,1, No. 5, 329–339 (1993).

    Google Scholar 

  32. K. Eng, “Gewebe/Gewirk-vergleich, D.O.S.-Structuren: sehr gut.,” Kettenwirk-praxis, No. 4, 43–47 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Mekhanika Kompozitnykh Materialov, Vol. 34, No. 6, pp. 747–760, November–December, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, CH., Dartman, T., Gredinger, P. et al. Flexible composites, strength, deformation, and fracture processes. 1. Reinforcement structures and tensile strength. Mech Compos Mater 34, 525–536 (1998). https://doi.org/10.1007/BF02254661

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254661

Keywords

Navigation