Skip to main content
Log in

Silyl modification of biologically active compounds 5. Hydrolytic stability and biological activity of the trialkylsilyl derivatives of some heterocyclic bases

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

The kinetics of the desilylation of the triorganosilyl derivatives of some biologically active heterocyclic bases and uridine were investigated by1H NMR spectroscopy. A correlation was established between the relative rates of desilylation and the steric environment of the silicon atom. In trials on locomotor activity and muscular tone, the effect on memory processes, and the Porsolt test it was found that tris(tert-butylmethylsilyl)barbituric acid has higher sedative activity than barbituric acid. In contrast to uridine, 5′-O-tert-butyldimethylsilyluridine exhibits antitumor activity, suppressing the development of fibrosarcoma in human lungs (HT-1080) and fibroblasts in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lukevits, S. Germane, I. Segal, and A. Zablotskaya, Khim. Geterotsikl. Soedin., No. 2, 270 (1997).

    Google Scholar 

  2. R. R. LeVier, M. L. Chandler, and S. R. Wendel, Biochemistry of Silicon and Related Problems, G. Bendz and I. Lindqvist (eds.), Plenum, New York (1978), p. 479.

    Google Scholar 

  3. E. Lukevits and A. Zablotskaya, Metalloorg. Khim.,6, 263 (1993).

    Google Scholar 

  4. R. R. LeVier, M. L. Chandler, and S. R. Wendel, Biochemistry of Silicon and Related Problems, G. Bendz and I. Lindqvist (eds.), Plenum, New York (1978), p. 485.

    Google Scholar 

  5. T. Nishimura, B. Shimizu, and I. Iwai, Chem. Pharm. Bull.,11, 1470 (1963).

    PubMed  Google Scholar 

  6. G. H. Hakimelani, Z. A. Proba, and K. K. Ogilvie, Can. J. Chem.,60, 1106 (1982).

    Google Scholar 

  7. A. H. Beckett, D. C. Taylor, and J. W. Gorrod, J. Pharm. Pharmacol.,27, 588 (1975).

    PubMed  Google Scholar 

  8. M. G. Voronkov, G. I. Zelchan, and É. Ya. Lukevits, Silicon and Life [in Russian], Zinatne, Riga (1978).

    Google Scholar 

  9. G. W. Peng, V. E. Marquez, and J. S. Driscoll, J. Med. Chem.,18, 846 (1975).

    Article  PubMed  Google Scholar 

  10. J. Grzybowska, J. Teodorczyk, R. Piekos, and A. Put, Sci. Pharm.,51, 301 (1983).

    Google Scholar 

  11. M. J. Samarasa, M. J. Perez-Perez, A. San-Felix, J. Balzarini, and E. De Clercq, J. Med. Chem.,35, 2721 (1992).

    Article  PubMed  Google Scholar 

  12. R. I. Freshney, Culture of Animal Cells, Wiley-liss, New York (1994), p. 296.

    Google Scholar 

  13. D. I. Fast, R. C. Lynch, and R. W. Leu, J. Leuk. Biol., 255 (1992).

  14. R. J. Riddel, R. H. Clotthiew, and M. Balls, Fd. Chem. Toxicol.,24, 469 (1986).

    Article  Google Scholar 

  15. E. Lukevics, I. Segal, A. Zablotskaya, and S. Germane, Molecules,2, 180 (1997).

    Google Scholar 

  16. V. V. Prozorovskii, M. P. Prozorovskaya, and V. M. Demchenko, Farmakologiya i Toksikologiya, No. 4, 497 (1978).

    Google Scholar 

Download references

Authors

Additional information

For communication 4, see [1].

Latvian Institute of Organic Synthesis, Riga, Latvia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1253–1258, September, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukevits, E., Segal, I., Birgele, I. et al. Silyl modification of biologically active compounds 5. Hydrolytic stability and biological activity of the trialkylsilyl derivatives of some heterocyclic bases. Chem Heterocycl Compd 34, 1076–1080 (1998). https://doi.org/10.1007/BF02251555

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02251555

Keywords

Navigation