Skip to main content
Log in

Differential anti-parkinsonian effects of benzazepine D1 dopamine agonists with varying efficacies in the MPTP-treated common marmoset

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

In common marmosets systemically treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), the behavioural effects of benzazepine D1 dopamine (DA) agonists with full/supramaximal (SKF 80723 and SKF 82958), partial (SKF 38393, SKF 75670 and SKF 83565) and no efficacies (SKF 83959) in stimulating adenylate cyclase (AC) activity were investigated. The benzazepine derivatives, with the exception of SKF 82958 (8 fold D1 DA receptor selectivity), demonstrated high D1 DA receptor affinity and selectivity (approximately 100 fold or more) in rat striatal homogenates. Administration of MPTP in marmosets induced locomotor hypoactivity, rigidity and motor disability. SKF 38393 (7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) and SKF 75670 (3-CH3 analogue) further reduced locomotor activity (by −70 to −80%) and increased motor disability (by +22 to +67%) in these animals. SKF 83565 (6-Cl, 3-CH3, 3′-Cl analogue) and SKF 82958 (6-Cl, 3-C3H5 analogue) had only a slight effect on locomotor activity but decreased motor disability at high doses (−46 to −60%). In contrast, SKF 83959 (6-Cl, 3-CH3, 3′-CH3 analogue) and SKF 80723 (6-Br analogue) produced pronounced increases in locomotion (6–10 fold) and a reversal in motor disability (by −64 to −77%). Oral activity, consisting largely of abnormal, ‘dyskinetic’ tongue protrusions and vacuous chews, was increased in animals treated with SKF 38393, SKF 83565, SKF 82958 and more especially with SKF 80723 and SKF 83959. Grooming was increased with SKF 82958 and more especially with SKF 80723 and SKF 83959. In contrast, quinpirole (D2 DA agonist), reversed the MPTP-induced motor deficits in the marmoset, with no effect on grooming and oral activity. The present findings further demonstrate the antiparkinsonian actions of some D1 DA agonists in MPTP-treated primates. However, in general the behavioural effects of benzazepines failed to correlate with either their D1 DA receptor affinity/selectivity or their efficacy in stimulating adenylate cyclase (AC) activity. These observations further implicate a behavioural role for D1 DA receptors uncoupled to AC and/or a role for extrastriatal D1 DA receptors in mediating the behavioural response to D1 DA agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnt J (1985a) Behavioural stimulation is induced by separate dopamine D1 and D2 receptors in reserpine-pretreated but not in normal rats. Eur J Pharmacol 113:79–88

    Article  PubMed  Google Scholar 

  • Arnt J (1985b) Hyperactivity induced by stimulation of separate dopamine D1 and D2 receptors in rats with bilateral 6-OHDA lesions. Life Sci 37:717–723

    Article  PubMed  Google Scholar 

  • Arnt J, Hyttel J (1984) Differential inhibition by dopamine D1 and D2 antagonists of circling behaviour induced by dopamine agonists in rats with unilateral 6-hydroxydopamine lesions. Eur J Pharmacol 102:349–354

    Article  PubMed  Google Scholar 

  • Arnt J, Hyttel J, Sanchez C (1992) Partial and full dopamine D1 receptor agonists in mice and rats: relation between behavioural effects and stimulation of adenylate cyclase activity in vitro. Eur J Pharmacol 213:259–267

    Article  PubMed  Google Scholar 

  • Battaglia G, Norman AB, Hess EJ, Creese I (1986) Functional recovery of D1 dopamine receptor mediated stimulation of rat striatal adenylate cyclase activity following irreversible modification byN-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ): evidence for spare receptors. Neurosci Lett 69:290–295

    Article  PubMed  Google Scholar 

  • Bedard PJ, Boucher R (1989) Effect of D1 receptor stimulation in normal and MPTP monkeys. Neurosci Lett 104:223–228

    Article  PubMed  Google Scholar 

  • Billard W, Ruperto V, Crosby G, Iorio LC, Barnett A (1984) Characterisation of the binding of [3H]-SCH 23390, a selective D−1 receptor antagonist ligand, in rat striatum. Life Sci 35:1885–1893

    Article  PubMed  Google Scholar 

  • Boyce S, Rupniak NMJ, Steventon MJ, Iversen SD (1990) Differential effects of D1 and D2 agonists in MPTP-treated primates: Functional implications for Parkinson's disease. Neurology 40:927–933

    PubMed  Google Scholar 

  • Braun AR, Chase TN (1986) Obligatory D1/D2 receptor interaction in the generation of dopamine agonist related behaviours. Eur J Pharmacol 131:301–306

    Article  PubMed  Google Scholar 

  • Close SP, Marriott AS, Pay S (1985) Failure of SKF 38393-A to relieve parkinsonian symptoms induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the marmoset. Br J Pharmacol 85:320–322

    PubMed  Google Scholar 

  • Close SP, Elliott PJ, Hayes AG, Marriott AS (1990) Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson's disease. Psychopharmacology 102:295–300

    Article  PubMed  Google Scholar 

  • Collins P, Broekkamp CLE, Jenner P, Marsden CD (1991) Drugs acting at D−1 and D-2 dopamine receptors induce identical purposeless chewing in rats which can be differentiated by cholinergic manipulation. Psychopharmacology 103:503–512

    Article  PubMed  Google Scholar 

  • Daly SA, Waddington JL (1992) D1 dopamine receptors and the topography of unconditioned motor behaviour: studies with the selective, ‘full efficacy’ benzazepine D1 agonist SKF 83189. J Psychopharmacol 6:50–60

    Google Scholar 

  • DeNinno MP, Schoenleber R, MacKenzie R, Britton DR, Asin KE, Briggs C, Trugman JM, Ackerman M, Artman L, Bednarz L, Bhatt R, Curzon P, Gomez E, Kang CH, Stitts J, Kebabian JW (1991) A68930: a potent agonist selective for the dopamine D1 receptor. Eur J Pharmacol 199:209–219

    Article  PubMed  Google Scholar 

  • Domino EF, Sheng J (1993) Relative potency and efficacy of some dopamine agonists with varying selectivities for D1 and D2 receptors in MPTP-induced hemiparkinsonian monkeys. J Pharmacol Exp Ther 265:1387–1391

    PubMed  Google Scholar 

  • Downes RP, Waddington JL (1993) Grooming and vacuous chewing induced by SKF 83959 and agonist of dopamine ‘D1 like’ receptors that inhibits dopamine sensitive adenylyl cyclase. Eur J Pharmacol 234:135–136

    Article  PubMed  Google Scholar 

  • Gagnon C, Bedard PJ, Di Paolo T (1990) Effect of chronic treatment of MPTP monkeys with dopamine D1 and/or D2 receptor agonists. Eur J Pharmacol 178:115–120

    Article  PubMed  Google Scholar 

  • Gnanalingham KK, Smith LA, Hunter AJ, Jenner P, Marsden CD (1993) Alterations in striatal and extrastriatal D1 and D2 dopamine receptors in the MPTP-treated common marmoset — an autoradiographic study. Synapse 14:184–194

    Article  PubMed  Google Scholar 

  • Gnanalingham KK, Hunter AJ, Jenner P, Marsden CD (1994) Selective protection of striatal/extrastriatal D1/D2 receptors from inactivation byN-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline: an autoradiographic study. Neuropharmacology (in press)

  • Gower AJ, Marriott AS (1982) Pharmacological evidence for the subclassification of central dopamine receptors in the rat. Br J Pharmacol 77:185–194

    Google Scholar 

  • Herve D, Trovero F, Blanc G, Glowinski J, Tassin JP (1992) Autoradiographic identification of D1 dopamine receptors labelled with [3H]-dopamine: distribution, regulation and relationship to coupling. Neuroscience 46:687–700

    Article  PubMed  Google Scholar 

  • Hess EJ, Battaglia G, Norman AB, Creese I (1987) Differential modification of striatal D1 dopamine receptors and effector moieties byN-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline in vivo and in vitro. J Pharmacol Exp Ther 31:50–57

    Google Scholar 

  • Itoh Y, Beaulieu M, Kebabian JW (1984) The chemical basis for the blockade of the D1 dopamine receptor by SCH 23390. Eur J Pharmacol 100:119–122

    Article  PubMed  Google Scholar 

  • Izenwasser S, Katz JL (1993) Differential efficacies of dopamine D1 receptor agonists for stimulating adenylyl cyclase in squirrel monkey and rat. Eur J Pharmacol [Mol Pharmacol] 246:39–44

    Article  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A77636: a potent and selective dopamine D1 receptor agonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203–209

    Google Scholar 

  • LaHoste GJ, Marshall JF (1990) Nigral D1 and striatal D2 receptors mediate the behavioural effects of dopamine agonists. Behav Brain Res 38:233–242

    Article  PubMed  Google Scholar 

  • Leysen JE, Commeren W, Laduron PM (1978) Spiperone: a ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding. Biochem Pharmacol 27:307–316

    Article  PubMed  Google Scholar 

  • Loschmann PA, Smith LA, Lange KW, Jaehnig P, Jenner P, Marsden CD (1991) Motor activity following the administration of selective D1 and D2 dopaminergic drugs to normal common marmosets. Psychopharmacology 105:303–309

    Article  PubMed  Google Scholar 

  • Loschmann PA, Smith LA, Lange KW, Jaehnig P, Jenner P, Marsden CD (1992) Motor activity following the administration of selective D1 and D2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology 109:49–56

    Article  PubMed  Google Scholar 

  • Lovenberg TW, Brewster WK, Mottola DM, Lee RC, Riggs RM, Nichols DE, Lewis MH, Mailman RB (1989) Dihydrexidine, a novel selective high potency full dopamine D1 receptor agonist. Eur J Pharmacol 166:111–113

    Google Scholar 

  • Madras BK, Fahey MA, Canfield DR, Spealman RD (1988) D1 and D2 dopamine receptors in caudate-putamen of non-human primates (Macaca fascicularis). J Neurochem 51:934–943

    PubMed  Google Scholar 

  • Mahan LC, Burch RM, Monsma FJ, Sibley DR (1990) Expression of striatal D1 dopamine receptors coupled to inositol phosphate production and Ca2+ mobilisation inXenopus oocytes. Proc Natl Acad Sci 87:2196–2200

    PubMed  Google Scholar 

  • Mailman RB, Schulz DW, Kilts CD, Lewis MH, Rollema H, Wyrick S (1986) The multiplicity of the D1 dopamine receptor. Neurobiology of central D1 dopamine receptors. In: Breese GR, Creese I (eds) Advances in Experimental Medicine and Biology 204:53–72

    PubMed  Google Scholar 

  • Markstein R, Seiler NP, Vigouret JM, Urwyler S, Enz A, Dixon K (1988) Pharmacological properties of CY 208-243, and normal D1 agonists. In: Sandler M (ed.) Proceedings of XIth international catecholamine symposium Part B: Central aspects, Alan R Liss, New York, pp. 59–64

    Google Scholar 

  • Mishra RK, Gardener EL, Katzman R, Makman MH (1974) Enhancement of dopamine stimulated adenylate cyclase activity in rat caudate after lesions in the substantia nigra: evidence for denervation supersensitivity. Proc Natl Acad Sci USA 71:3883–3887

    PubMed  Google Scholar 

  • Molloy AG, Waddington JL (1984) Dopaminergic behaviour stereospecifically promoted by the D1 agonist R-SK&F 38393 and selectively blocked by the D1 antagonist SCH 23390. Psychopharmacology 82:409–410

    Article  PubMed  Google Scholar 

  • Molloy AG, Waddington JL (1987) Assessment of grooming and other behavioural responses to the D1 dopamine receptor agonist SKF 38393 and itsR- andS-enantiomers in the intact adult rat. Psychopharmacology 92:164–168

    Google Scholar 

  • Murray AM, Waddington JL (1989) The induction of grooming and vacuous chewing by a series of selective D1 dopamine agonists: two directions of D1:D2 interaction. Eur J Pharmacol 160:377–384

    Article  PubMed  Google Scholar 

  • Neisewander JL, Lucki I, McGonigle P (1991) Behavioural and Neurochemical effects of chronic administration of reserpine and SKF 38393 in rats. J Pharmacol Exp Ther 257:850–860

    PubMed  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1985) The dopamine D2 agonist LY 141865, but not the D1 agonist SKF 38393 reverses parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset. Neurosci Letts 57:37–41

    Article  Google Scholar 

  • O'Boyle KM, Waddington JL (1987) [3H]-SCH 23390 binding to human putamen D1 dopamine receptors: stereochemical and structure-affinity relationships among 1-phenyl-1H-3-benzazepine derivatives as a guide to D1 receptor topography. J Neurochem 48:1039–1042

    PubMed  Google Scholar 

  • O'Boyle KM, Gaitanopoulos DE, Brenner M, Waddington JL (1989) Agonist and antagonist properties of benzazepine and thienopyridine derivatives at the D1 dopamine receptor. Neuropharmacology 28:401–405

    Article  PubMed  Google Scholar 

  • Pifl C, Reither H, Hornykiewicz O (1991) Lower efficacy of the dopamine D1 agonist, SKF 38393, to stimulate adenylyl cyclase activity in primate than in rodent striatum. Eur J Pharmacol 202:273–276

    Article  PubMed  Google Scholar 

  • Pifl C, Nanoff C, Schingnitz G, Schultz W, Hornykiewicz O (1992) Sensitisation of dopamine stimulated adenylyl cyclase in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys and patients with idiopathic Parkinson's disease. J Neurochem 58:1997–2004

    PubMed  Google Scholar 

  • Robertson GS, Robertson HA (1989) Evidence thatl-dopa-induced rotational behaviour is dependent on both striatal and nigral mechanisms. J Neurosci 9:3326–3331

    PubMed  Google Scholar 

  • Robertson HA, Peterson MR, Murphy K, Robertson GS (1989) D1 Dopamine receptor agonists selectively activate striatalc-fos independent of rotational behaviour. Brain Res 503:346–349

    Article  PubMed  Google Scholar 

  • Rogers DC, Reavill CA, Hunter AJ (1992) Comparison of the effects of selective D1 agonists on dopamine-mediated behaviour. Br J Pharmacol [Suppl] 100:409p

  • Rosengarten H, Schweitzer JW, Friedhoff AJ (1983) Induction of oral dyskinesias in naive rats by D1 stimulation. Life Sci 33:2479–2482

    Article  PubMed  Google Scholar 

  • Rosengarten H, Schweitzer JW, Friedhoff AJ (1986) Selective dopamine D2 receptor reduction enhances a D1 mediated oral dyskinesia in rats. Life Sci 39:29–35

    Article  PubMed  Google Scholar 

  • Rupniak NMJ, Tye SJ, Iversen SD (1990) Drug-induced purposeless chewing: animal model of dyskinesia or nausea? Psychopharmacology 102:325–328

    Article  PubMed  Google Scholar 

  • Rupniak NMJ, Boyce S, Steventon M, Iversen SD (1992) Weak antiparkinsonian activity of the D1 agonist C-APB (SKF 82958) and lack of synergism with a D2 agonist in primates. Clinical Neuropharmacol 15:307–309

    Google Scholar 

  • Schoors DF, Vauquelin GP, Vos HD, Smets G, Velkeniers B, Vanhaelst L, Dupont AG (1991) Identification of a D1 dopamine receptor, not linked to adenylate cyclase, on lactotroph cells. Br J Pharmacol 103:1928–1934

    PubMed  Google Scholar 

  • Setler PE, Sarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50:419–430

    Article  PubMed  Google Scholar 

  • Sibley DR, Monsma FJ (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69

    Article  PubMed  Google Scholar 

  • Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366–368

    Article  PubMed  Google Scholar 

  • Taylor JR, Lawrence MS, Redmond DE, Elsworth JD, Roth RH, Nichols DE, Mailman RB (1991) Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in monkeys. Eur J Pharmacol 199:389–391

    Article  PubMed  Google Scholar 

  • Temlett JA, Chong PN, Oertel WH, Jenner P, Marsden CD (1988) The D-1 dopamine receptor partial agonist, CY 208-243, exhibits antiparkinsonian activity in the MPTP-treated marmoset. Eur J Pharmacol 156:197–206

    Article  PubMed  Google Scholar 

  • Undie AS, Friedman E (1990) Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther 253:987–992

    PubMed  Google Scholar 

  • Watts VJ, Lawler CP, Gilmore JH, Southerland SB, Nichols DE, Mailman RB (1993) Dopamine D1 receptors: efficacy of full (dihydrexidine) vs. partial (SKF 38393) agonists in primates vs. rodents. Eur J Pharmacol 24:165–172

    Google Scholar 

  • Weinstock J, Hieble JP, Wilson JW (1985) The chemistry and pharmacology of 3-benzazepine derivatives. Drugs Future 10:645–696

    Google Scholar 

  • Weinstock J, Ladd DL, Wilson JW, Brush CK, Yim NCF, Gallagher G, McCarthy ME, Silvestri J, Sarau HM, Flaim KE, Ackerman DM, Setler PE, Tobia AJ, Hahn RA (1986) Synthesis and renal vasodilator activity of some dopamine agonist 1-aryl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diols: halogen and methyl analogues of fenoldopam. J Med Chem 29:2315–2325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnanalingham, K.K., Smith, L.A., Jenner, P. et al. Differential anti-parkinsonian effects of benzazepine D1 dopamine agonists with varying efficacies in the MPTP-treated common marmoset. Psychopharmacology 117, 275–286 (1995). https://doi.org/10.1007/BF02246102

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02246102

Key words

Navigation