Skip to main content
Log in

The dopamine hypothesis of schizophrenia: limbic interactions with serotonin and norepinephrine

  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The “dopamine hypothesis” of schizophrenia has been the predominant guiding theoretical construct for driving studies of the neurobiology of schizophrenia. There has, however, been much interest in the contributions of non-dopamine systems to the clinical symptoms of schizophrenia, in particular, norepinephrine and serotonin. However, direct evidence for altered transmission in monoamine systems has been quite limited. In part this reflects a focus on specific brain regions for different transmitters, in contrast to a “neural systems” approach. Thus, evidence for the dopamine hypothesis has been derived from studies of the basal ganglia in schizophrenic cases and infrequently from other (e.g. cortical) regions. Recent studies have suggested that disturbances in the organization or development of the temporal lobe may underlie certain aspects of the symptoms of schizophrenia In particular, the hippocampus may show cellular loss or disturbances in cell orientation. These results are supported by the work that has identified neuropsychological and in vivo brain disturbances in schizophrenia specific to the medial temporal lobe. However, not all cases show such pathology and it is likely that these disorders could, in addition, involve an important afferent and/or efferent system associated with the temporal lobe. This model is based on the currently held view that parallel cortico-striatal-pallidal-thalamo circuits form an important basis for information processing in the brain. One such circuit involves the primary efferent of the hippocampus, the subiculum, and associated cortical regions that project onto the ventral striatum. Many of the cortical regions that project directly to the ventral striatum also project to the hippocampus via the entorhinal cortex. These include the anterior cingulate, posterior cingulate, superior temporal cortex, and inferior temporal cortex. The ventral striatum, made up of the nucleus accumbens, olfactory tubercle, and ventral putamen, has as its target the ventral pallidum. The ventral pallidum projects to the medial dorsal nuclei of the thalamus, which, in turn, projects to the anterior prefrontal cortical area. This loop has been referred to as the limbic loop. The patterns of innervation and expression of monoamine receptors in the brain have been delineated for the non-human primate and are being unraveled in the human. We, and others, have described the patterns of receptor expression in the limbic circuit. However, few studies have been published to date that detail what the neurochemical counterparts of the neuronal and neuropsychological disturbances in the limbic circuit might be. We have explored the possibility that monoamine systems are altered at more than one synaptic station in this circuit. Results from this laboratory, reviewed here, indicate that the temporal lobe is a site that is particularly sensitive to neurochemical disorganization. The patterns of innervation and the expression of the monoamine receptors in the limbic regions of the brain are altered in schizophrenia. These findings are consistent with the “dopamine hypothesis of schizophrenia” but provide a significantly new perspective. Our research indicates that DA receptor antagonists should exert their anti-psychotic effects by acting in the region of the brain where psychotic symptoms originate (i.e. the temporal lobe/hippocampus). The existence of DA receptors, particularly of the D2 subtype, in the limbic circuits allows antipsychotics to act in the neural circuits that contribute to the symptoms of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggleton JP, Friedman DP, Mishkin M (1987) A comparison between the connections of the amygdala and hippocampus with the basal forebrain in the macaque. Exp Brain Res 67:556–568

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. TINS 13:266–271

    PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel Organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381

    Article  PubMed  Google Scholar 

  • Alheid GF, Heimer GL (1988) New perspectives sin basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid and corticopetal components of substantia innominata. Neuroscience 27:1–39

    Article  PubMed  Google Scholar 

  • Amaral DG, Campbell MJ (1986) Transmitter systems in the primate dentate gyrus. Hum Neurobiol 5:169–180

    PubMed  Google Scholar 

  • Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 711–755

    Google Scholar 

  • Andree TH, Mikuni M, Tong CY, Koenig JY, Meltzer HY (1986) Differential effect of subchronic treatment with various neuroleptic agents on serotonin2 receptors in rat cerebral cortex. J Neurochem 46:191–197

    PubMed  Google Scholar 

  • Arango V, Ernsberger P, Marzuk PM, Chen H, Tierney H, Stanley M, Reis DJ, Mann JJ (1990) Autoradiographic demonstration of increased serotonin 5-HT2 and β-adrenergic receptor binding sites in the brain of suicide victims. Arch Gen Psychiatry 47:1038–1047

    PubMed  Google Scholar 

  • Arora RC, Meltzer HY (1989) Serotonergic measures in the brains of suicide victims: 5-HT2 binding sites in the frontal cortex of suicide victims and control subjects. Am J Psychiatry 146:730–736

    PubMed  Google Scholar 

  • Bacopoulas NG, Spokes EG, Bird ED, Roth RH (1979) Antipsychotic drug action in schizophrenic patients: effect of cortical dopamine metabolism after long-term treatment. Science 205:1405–1407

    PubMed  Google Scholar 

  • Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 12:924–929

    PubMed  Google Scholar 

  • Bennett JP, Enna SJ, Bylund DB, Gillin JC, Wyatt RJ, Snyder SH (1979) Neurotransmitter receptors in frontal cortex of schizophrenics. Arch Gen Psychiatry 36:927–934

    PubMed  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerabral cortex: unexpected differences between rodents and primates. TINS 14:21–27

    PubMed  Google Scholar 

  • Besson MJ, Graybiel AM, Nastuk MA (1988) [3H]SCH 23390 binding to D1 dopamine receptors in the basal ganglia of the cat and primate: delineation of striosomal compartments and pallidal and nigral subdivisions. Neuroscience 26:101–119

    Article  PubMed  Google Scholar 

  • Bird EO, Spokes EG, Iversen LL (1979) Brain norepinephrine and dopamine in schizohrenia. Science 204:456

    Google Scholar 

  • Bleich A, Brown S, Kahn R, Van Praag HM (1988) The role of serotonin in schizophrenia. Schizophr Bull 14:287–315

    Google Scholar 

  • Bogerts B, Hantsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 18:951–969

    PubMed  Google Scholar 

  • Booze RM, Crisostomo EA, Davis JN (1989) Species differenes in the localization and number of CNS beta adrenergic receptors: rat verus guinea pig. J Pharmacol Exp Ther 249:911–919

    PubMed  Google Scholar 

  • Bowers MB (1987) The role of drugs in the production of schizophreniform psychoses and related isorders. In: Meltzer HV (ed) Psychopharmacology the third generation of progress. Raven Press, New York, pp 819–812

    Google Scholar 

  • Bruton CJ, Crow TJ, Frith CD, Johnstone EC, Owens DGC, Robert GW (1990) Schizophrenia and the brain: a prospective clinico-neuropathological study. Psychol Med 20:285–304

    PubMed  Google Scholar 

  • Carenzi A, Gillin JC, Guidotti A, Schwartz MA, Trabucchi M, Wyatt RJ (1975) Dopamine-sensitive adenylyl cyclase in human caudate nucleus. Arch Gen Psychiatry 32:1056–1059

    PubMed  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine of halperidol on formation of 3'-methyoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Google Scholar 

  • Carlsson M, Carlsson A (1990) Schizophrenia: a subcortical neurotransmitter inbalance syndrome? Schizophr Bull 16:425–432

    PubMed  Google Scholar 

  • Castelao JF, Ferreira L, Gelder YG, Heylen SL (1989) The efficacy of the D2 and 5-HT2 antagonist risperidone (R 64,766) in the treatment of chronic psychosis. An open dose-fidning study. Schizophr Res 2:411–415

    Article  PubMed  Google Scholar 

  • Chen JF, Weiss B (1991) Ontogenetic expression of D2 dopamine receptor mRNA in rat corpus striatum. Dev Brain Res 63:95–104

    Article  Google Scholar 

  • Chubakov AR, Gromova EA, Gromova GV, Sarkisova EF, Chumasov EI (1986) The effects of serotonin on the morpho-functional development of rat cerebral neocortex in tissue culture. Brain Res 369:285–297

    Article  PubMed  Google Scholar 

  • Cortés R, Gueye B, Pazos A, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D1 sites. Neuroscience 28:263–273

    Article  PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:596–598

    Google Scholar 

  • Cross AJ, Crow TJ, Ferier IN, Johnson EC, McCreadie RM, Owen F, Owen DGC, Poulter M (1983) Dopamine receptor changes in schizophrenia in relation to the disease process and movement disorder. J Neural Transm Suppl 18:265–272

    PubMed  Google Scholar 

  • Crow TJ (1982) The biology of schizophrenia. Experientia 38:1275–1282

    Article  PubMed  Google Scholar 

  • Crow TJ, Baker H, Gross A, Joseph M, Lofthouse R, Longden A, Owen F, Riley G, Glover V Killpack W (1979) Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. Br J Psychiatry 134:249–256

    PubMed  Google Scholar 

  • Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease process? Brit J Psychiatry 145:243–253

    Google Scholar 

  • Crow TJ, Owen F, Cross AJ, Ferrier IN, Johnstone EC, McCreadie RG, Owens DG, Poulter M (1981) Neurotransmitter enzymes and receptors in post-mortem brain in schizophrenia: evidence that an increase in D2 receptors is associated with the type I syndrome. In: Riedere P, Usdin E (eds) Transmittetr biochemistry of human brain tissue. Macmillan, London, pp 85–96

    Google Scholar 

  • Crow TJ, Cross AJ, Cooper SJ, Deakin JFW, Ferrier IN, Johnson, Joseph MJ, Owen F, Poulter M, Lofthouse R, Corsellis JAN, Chambers DRB, Perry EK, Perry RH, Tomlinson BE (1984) Neurotransmitter receptors and monoamine metabolites in brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmacology 23:1561–1569

    Article  PubMed  Google Scholar 

  • Csernansky JG, Murphy GM, Faustman WO (1991) Limbic/mesolimbic connections and the pathogenesis of schizophrenia. Biol Psychiatry 30:383–400

    Article  PubMed  Google Scholar 

  • Czudek C, Reynolds GP (1989) [3H]GBR 12935 binding to the dopamine uptake site in post-mortem brain tissue in schizophrenia. J Neural Transm 77:227–230

    Article  PubMed  Google Scholar 

  • D'Amato RJ, Blue ME, Largent BL, Lynch BR, Ledbetter DJ, Molliver ME, Snyder SN (1987a) Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation into primary sensory areas. Proc Natl Acad Sci USA 84:4322–4326

    PubMed  Google Scholar 

  • D'Amato RJ, Largent BL, Snowman AM, Snyder SH (1987b) Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to the labeling of multiple sites by [3H]imipramine. J Pharmacol Exp Ther 242:364–371

    PubMed  Google Scholar 

  • De Paermentier, F, Cheetham SC, Cromptom MR, Horton RW (1989) β-Adrenoceptors in human brain labelled with [3H]dihydroalprenolol and [3H]CGP 12177. Eur J Pharmacol 167:397–405

    Article  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. TINS 13:281–285

    PubMed  Google Scholar 

  • Dewar KM, Soghomonian J, Bruno JP, Descarries LR (1990) Elevation of dopamine D2 but not D1 receptors in adult rat striatum after neonatal 6-hydroxydopamine denervation. Brain Res 536:287–296

    Article  PubMed  Google Scholar 

  • Donlon PT, Stenson RL (1976) Neuroleptic induced extrapyramidal symptoms. Dis Nerv Syst 37:629–635

    PubMed  Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:545–580

    Article  PubMed  Google Scholar 

  • Farley IJ, Price KS, McCullough E, Deck HHN, Hordynksi O, Hornykiewicz O (1979) Norepinephrine in chronic paranoid schizophrenia: above-normal levels in limbic forebrain. Science 200:456–458

    Google Scholar 

  • Farley IJ, Shannak K, Hornykiewicz D (1980) Brain monoamine changes in chronic paranoid schizophrenia and their possible relation to increased dopamine receptor sensitivity. In: Pepeu G, Kuhar M, Enna S (eds) Receptors for neurotransmitters and peptide hormones. Raven Press, New York, pp 427–433

    Google Scholar 

  • Fiedler EP, Marks MJ, Collins AC (1987) Postnatal development of cholinergic enzymes and receptors in mouse brain. J Neurochem 49:983–990

    PubMed  Google Scholar 

  • Fishell G, Van der Kooy D (1987) Pattern formation in the striatum: developmental changes in the distribution of striatonigral neurons. J Neurosci 7:1969–1978

    PubMed  Google Scholar 

  • Frazer A, Offord SJ, Lucki I (1988) Regulation of serotonin receptors and responsiveness in the brain. In: Sanders-Bush E (ed) The serotonin receptors. The Humana Press, pp 319–362

  • Frazer A, Maayani S, Wolfe BB (1990) Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol 30:307–348

    Article  PubMed  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1988) Activation of the hippocampus and dentate gyrus by working-memory: a 2-deoxyglucose study of behaving rhesus monkeys. J Neurosci 8:4693–4706

    PubMed  Google Scholar 

  • Frielle T, Kobilka B, Lefkowitz RJ, Caron MG (1988) Human β1-and β2-adrenergic receptors: Structurally and functionally related receptors derived from distinct genes. TINS 11:321–323

    PubMed  Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271

    Article  PubMed  Google Scholar 

  • Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B (1991) Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson's disease. Ann Neurol 30:365–374

    Article  PubMed  Google Scholar 

  • Gerfen CR, Herkenham M, Thiabault J (1987a) The neostriatal mosaic II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934

    PubMed  Google Scholar 

  • Gerfen CR, Baimbridge KG, Thibault J (1987b) The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci 7:3935–3944

    PubMed  Google Scholar 

  • Goedart M, Mantyh PW, Emson PS, Hunt SP (1984) Inverse relationship between neurotensin receptors and neurotensin-like immunoreactivity in cat striatum. Nature 307:543–546

    Article  PubMed  Google Scholar 

  • Goldman PS, Nauta WJH (1977) Columnar distribution of corticocortical fibers in the frontal association, limbic and motor cortex of the developing rhesus monkey. Brain Res 122:393–413

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS (1982) Cytoarchitectonic heterogeneity of the primate neostriatum-subdivision into island and matrix cellular compartments. J Comp Neurol 205:398–413

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10:2125–2138

    PubMed  Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat L, Glowinki J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand:3H-DPAT. Nature 305:140–142

    Article  PubMed  Google Scholar 

  • Graybiel AM (1984) Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 13:1157–1187

    Article  PubMed  Google Scholar 

  • Graybiel AM (1986) Neurochemically specified subsystems in the basal ganglia. Ciba Foundation Symposium 107:114–149

    Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. TINS 13:244–254

    PubMed  Google Scholar 

  • Graybiel AM, Chesselet M (1984) Compartmental distribution of striatal cell-bodies expressing [Met]enkephalin like immunoreactivity. Proc Natl Acad Sci USA 81:7980–7984

    PubMed  Google Scholar 

  • Graybiel AM, Ragsdale CW (1978) Histochemically distinct compartments in striatum of human, monkey and cat demonstrated by acetyliocholinesterase staining. Proc Natl Acad Sci USA 74:5723–5726

    Google Scholar 

  • Graybiel AM, Ragsdale CWJ, Yoneoka ES, Elder RP (1981) An immunohisto-chemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate receptors are arranged to form mosaic patterns in register with the striosomal compartmens visible by acetylcholinesterase staining. Neuroscience 6:377–397

    Article  PubMed  Google Scholar 

  • Graybiel AM, Baughman RW, Eckenstein F (1986) Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 323:625–627

    Article  PubMed  Google Scholar 

  • Graybiel AM, Hirsch EC, Agid YA (1987) Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and matrix at maturity. Proc Natl Acad Sci USA 84:303–307

    PubMed  Google Scholar 

  • Graybiel AM, Liu G, Dunnett SB (1989) Intrastriatal grafts derived from fetal striatal primordia. I. phenotypy and modular organization. J Neurosci 9:3250–3271

    PubMed  Google Scholar 

  • Gromova HA, Chubakov AR, Chumasov EI, Konovalov HV (1983) Serotonin as a stimulator of hippocampal cell differentiation in tissue culture. Int J Dev Neurosci 1:339–349

    Article  Google Scholar 

  • Gross-Isseroff R, Israeli M, Biegon A (1988) Autoradiographic analysis of [3H]desmethylimipramine binding in the human brain postmortem. Brain Res 456:120–126

    Article  PubMed  Google Scholar 

  • Gross-Isseroff R, Israeli M, Biegon A (1989) Autoradiographic analysis of tritiated imipramine binding in the human brain post mortem: effects of suicide. Arch Gen Psychiatry 46:237–241

    PubMed  Google Scholar 

  • Gross-Isseroff R, Salama D, Israeli M, Biegon A (1990) Autoradiographic analysis of age-dependent changes in serotonin 5-HT2 receptors of the human brain postmortem. Brain Res 519:223–227

    Google Scholar 

  • Haber SN (1986) Neurotransmitters in the human and nonhuman primate basal ganglia. Hum Neurobiol 5:159–168

    PubMed  Google Scholar 

  • Hall MD, El Mestikawy S, Emerit MB, Pichat L, Hamon M, Gozlan H (1985)3H-8-Hydroxy-2-(di-n-propylamino)tetralin-bindg to pre-and post-synaptic 5-hydroxytryptamine binding sites invarious regions of the rat brain. J Neurochem 44:1685–1696

    PubMed  Google Scholar 

  • Heimer L, Wilson RD (1975) The subcortical projections of the allocortes: similarities in the neural associations of the hippocampus, the priform cortex, and the neocortes. In: Santini M (ed) Golgi Centennial symposium. Raven Press, New York, pp 177–193

    Google Scholar 

  • Heimer L, Alheid GF, Zaborszky L (1985) Basal ganglia. In: Paxinos G (ed) The rat nervous system, vol 1. Forebrain and midbrain. Academic Press, Australia, pp 37–86

    Google Scholar 

  • Herkenham M, Pert CB (1981) Mosiac distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature 291:415–417

    Article  PubMed  Google Scholar 

  • Hess EJ, Bracha HS, Kleinman JS, Creese I (1987) Dopamine receptor subtype imbalance in schizophrenia. Life Sci 40:1487–1497

    Article  PubMed  Google Scholar 

  • Hirai M, Kitamura N, Hashimoto T, Nakai T, Shirakawa O, Yamadori O, Amano T, Noguchi-Kuno SA, Tanaka C (1988) [3H]GBR-12935 binding sites in human striatal membranes: binding characteristics and changes in parkinsonians and schizophrenics. Jpn J Pharmacol 47:237–243

    PubMed  Google Scholar 

  • Hornykiewicz O (1973) Parkinson's disease: from brain homogenate to treatment. Fed Proc 32:183–190

    PubMed  Google Scholar 

  • Hornykiewicz O (1982) Brain catecholamines in schizophrenia — a good case for noradrenaline. Nature 299:484–485

    Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986) Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res 376:85–96

    Article  PubMed  Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376:97–107

    Article  PubMed  Google Scholar 

  • Humphrey T (1967) The development of the human hippocampal fissure. J Anat 101:655–676

    PubMed  Google Scholar 

  • Hurtig H, Joyce JN, Sladek JRJ, Trojanowski JW (1989) Postmortem analysis of adrenal-medulla-to-caudate autograft in a patient with Parkinson's disease. Ann Neurol 25:607–614

    Article  PubMed  Google Scholar 

  • Ikegami H, Prasad C (1990) Neuropeptide-dopamine interactions. V. Cyclo(His-Pro) regulation of striatal dopamine transporter complex. Peptides 11:145–148

    Article  PubMed  Google Scholar 

  • Innausti R, Amaral DG, Cowan WM (1987) The enorhianl cortes of the monkey: II. cortical afferents. J. Comp Neurol 264:356–395

    Article  PubMed  Google Scholar 

  • Jimenez-Castellanos J, Graybiel AM (1987) Subdivisions of the dopamine-containing A8-A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix. Neuroscience 23:223–242

    Article  PubMed  Google Scholar 

  • Joseph MH, Baker HF, Crow TJ, Riley GJ, Rigsby D (1979) Brain tryptophan metabolism in schizophrenia: a posmortem study of metaboliyes on the serotonin and kynurenine pathways in schizophrenic and control subjects. Psychopharmacology 62:279–285

    Article  PubMed  Google Scholar 

  • Joyce JN (1991) Differential response of striatal dopamine receptor subtypes and cholinergic muscarinic receptors to the loss of dopamine: I. Effects of intranigral or intracerebroventricular 6-hydroxydopamine lesions of the mesostriatal dopamine system. Exp Neurol 113:261–276

    Article  PubMed  Google Scholar 

  • Joyce JN, Hurtig H (1990) Differential regulation of striatal dopamine D1 and D2 receptor systems in Parkinson's disease and effects of adrenal medullary transplant. Prog Brain Res 82:699–706

    PubMed  Google Scholar 

  • Joyce JN, Sapp DW, Marshall JF (1986) Human striatal dopamine receptors are organized in compartments. Proc Natl Acad Sci USA 83:8002–8006

    PubMed  Google Scholar 

  • Joyce JN, Lexow N, Bird E, Winokur A (1988a) Organization of dopamine D1 and D2 receptors in human striatum: receptor autoradiographic studies in Huntington's disease and schizophrenia. Synapse 2:546–557

    Article  PubMed  Google Scholar 

  • Joyce JN, Lexow N, Neal B, Winokur A (1988b) Dopaminergic, serotonergic, cholinergic and β-adrenergic systems in normal and schizophrenic striatum with reference to striosome/matrix compartments. Soc Neurosci Abstr 14:720

    Google Scholar 

  • Joyce JN, Janowsk A, Neve KA (1991) Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain. J Pharmacol Exp Ther 253:1253–1263

    Google Scholar 

  • Joyce JN, Lexow N, Kim SJ, Artymysh R, Cassanova M, Kleinman J, Bird E, Winokur A (1992) Distribution of beta-adrenergic receptor subtypes in human post-mortem brain: alterations in limbic regions of schizophrenics. Synapse 10:228–246

    Article  PubMed  Google Scholar 

  • Joyce JN, Shane A, Lexow N, Winokur A, Casanova MF, Kleinman JE (1993) Serotonin uptake sites and serotonin receptors are altered in limbic system of schizophrenics. Neuropsychopharmacol (in press)

  • Kellar KJ, Stockmeier CA, Tainvow TC, Wolfe BB (1985) Electroconvulsive shock selectively down-regulates beta-1 adrenergic receptors in specific areas of rat brain. Soc Neurosci Abstr 11:812

    Google Scholar 

  • Kelley AE, Domesick VB, Nauta WHJ (1982) The amygdalostriatal projection in the rat-an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    Article  PubMed  Google Scholar 

  • Kleinman JE, Karoum F, Rosenblatt JE, Gillin JC, Hong J, Bridge TP, Zalcman S, Del Carmen R, Wyatt RJ (1982) Postmortem neurochemical studies in chronic schizophrenia. In: Usdin E, Hanin I (eds) Biological markers in psychiatry and neurology. Pergamon Press, Oxford, pp 67–76

    Google Scholar 

  • Korpi ER, Kleinman JE, Goodman SI, Phillips I, DeLisi LE, Linnoila M, Wyatt RJ (1986) Serotonin and 5-hydroxy-indoleacetic acid in the brains of suicide victims: comparison in chronic schizophrenic patients with suicide as cause of death. Arch Gen Psychiatry 43:594–600

    PubMed  Google Scholar 

  • Kosofsky BE, Molliver ME (1987) The serotoninergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and medain raphe nuclei. Synapse 1:153–168

    Article  PubMed  Google Scholar 

  • Kostovic I, Seress L, Mrzijak L, Judas M (1989) Early onset of synapse formation in the human hippocampus: a correlation with Nissl-Golgi architectonics in 15- and 16.5 week-old fetuses. Neuroscience 30:105–116

    Article  PubMed  Google Scholar 

  • Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178:255–280

    Article  PubMed  Google Scholar 

  • Lanca AJ, Boyd S, Kolb B, Van der Kooy D (1986) The development of a patchy organization of the rat striatum. Dev Brain Res 27:1–10

    Article  Google Scholar 

  • Langer LF, Graybiel AM (1989) Distinct nigrostriatal projection systems innervate striosomes and matrix in the priamte striatum. Brain Res 498:344–350

    Article  PubMed  Google Scholar 

  • Lauder JM (1990) Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal. Proc NY Acad Sci 600:297–314

    Google Scholar 

  • Lauder JM, Bloom FE (1975) Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol 155:469–482

    Article  Google Scholar 

  • Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp. Neurol 299:1–16

    Article  PubMed  Google Scholar 

  • Lee T, Tange SW (1984) Loxapine and clozapine decrease serotonin (S2) but do not elevate dopamine (D2) receptor numbers in the rat brain. Psychiatry Res 12:277–285

    Article  PubMed  Google Scholar 

  • Lewis DA, Campbell MJ, Foote SL, Morrison JH (1986) The monoaminergic innervation of the primate neocortex. Hum Neurobiol 5:181–188

    PubMed  Google Scholar 

  • Lidov HG, Molliver ME (1982) an immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res Bull 8:389–430

    Article  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1989) Quantitative autoradiographic mapping of serotonin 5-HT1 and 5-HT2 receptors and uptake sites in the neocortex of the rhesus monkey. J Comp Neurol 280:27–42

    Article  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Rakic P (1991) Synchronized over-production of neurotransmitter receptors in diverse reigons of the primate cerebral cortex. Proc Natl Acad Sci USA 88:10218–10221

    PubMed  Google Scholar 

  • Lohr JB, Jeste DV (1988) Locus ceruleus morphometry in aging and schizophrenia. Acta Psychiatr Scand 77:689–697

    PubMed  Google Scholar 

  • Lowenstein PR, Slesinger PA, Singer HS, Walker LC, Casanova MF, Raskin LS, Price DL, Coyle JT (1989) Compartment specific changes in the density of choline and dopamine uptake sites and muscarinic and dopaminergic receptors during the development of the baboon striatum: a quantitative receptor autoradiographic study. J Comp Neurol 288:428–446

    Article  PubMed  Google Scholar 

  • Lowenstein PR, Joyce JN, Coyle JT, Marshall JF (1990) Striosomal organization of cholinergic and dopaminergic uptake sites and cholinergic M1 receptors in the adult human striatum: a quantitative receptor autoradiographic study. Brain Res 510:122–126

    Article  PubMed  Google Scholar 

  • Lüders H, Lesser RP, Hahn J, Dinner DS, Morris HH, Wyllie EG (1991) Basal temporal language area. Brain 114:743–754

    PubMed  Google Scholar 

  • Mackay AVP, Iversen L, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Snyder SH (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39:991–997

    PubMed  Google Scholar 

  • Mamounas LA, Mullen CA, O'Hearn E, Molliver ME (1991) Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol 314:558–586

    Article  PubMed  Google Scholar 

  • Mann JJ, Arango AN (1988) CNS adrenergic receptor and beta blockade. Postgrad Med 29:135–139

    Google Scholar 

  • Mann JJ, Stanley M, McBride PA, McEwen BS (1986) Increases serotonin2 and beta-adrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 43:954–959

    PubMed  Google Scholar 

  • Marshall JF, Navarrete R, Joyce JN (1989) Decreased striatal D1 binding density following mesotelencephalic 6-hydroxydopamine injections: an autoradiographic analysis. Brain Res 493:247–257

    Article  PubMed  Google Scholar 

  • Marshall JF, O'Dell SJ, Navarrete R, Rosenstein AJ (1990) Dopamine high-affinity transport site topography in rat brain: major differences between dorsal and ventral striatum. Neuroscience 37:11–21

    Article  PubMed  Google Scholar 

  • Martin LJ, Hadfield MG, Dellovade TL, Price DL (1991) The striatal mosaic in primates: patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum. Neuroscience 43:397–417

    Article  PubMed  Google Scholar 

  • Masudi NA, Gilmore DP (1983) Biogenic amine levels in the midterm human foetus. Dev Brain Res 7:9–12

    Article  Google Scholar 

  • Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 99:S18-S27

    Article  PubMed  Google Scholar 

  • Memo M, Kleinman JE, Hanbauer AI (1983) Coupling of dopamine D1 recognition sites with adenylate cyclase in nuclei accumbens and caudatus of schizophrenics. Science 221:1304–1307

    PubMed  Google Scholar 

  • Minneman KP, Dibner MD, Wolfe BB, Molinoff PB (1979a) β1-and β2-adrenergic receptors in rat cerebral cortex are independently regulated. Science 204:866–868

    PubMed  Google Scholar 

  • Minneman KP, Hegstrand LR, Molinoff PB (1979b) Simulteneous determination of β1- and β2-adrenergic receptors in tissue containing both receptor subtypes. Mol Pharmacol 16:34–46

    PubMed  Google Scholar 

  • Mishkin M (1982) A memory system in the monkey. Philos Trans R Soc Lond 298:85–95

    Google Scholar 

  • Mita T, Hanada S, Nishino N, Kuno T, Nakai H, Yamadori T, Mizoi Y, Tanaka C (1986) Decreased serotonin S2 and increased dopamine D2 receptors in chronic schizophrenics. Biol Psychiatry 21:1407–1414

    Article  PubMed  Google Scholar 

  • Murrin LC, Ferrer JA (1984) Ontogeny of the striatum: correspondence of dopamine terminals, opiate receptors and acetyl-cholinesterase. Neurosci Lett 47:155–160

    Article  PubMed  Google Scholar 

  • Nastuk MA, Graybiel AM (1988) Autoradiographic localization and biochemical characteristics of M1 and M2 muscarinic binding sites in the striatum of the cat, monkey, and human. J Neurosci 8:1052–1062

    PubMed  Google Scholar 

  • Neal BS, Joyce JN (1991a) D1 and D2 receptor do not nup-regulate in response to neonatal intrastriatal 6-hydroxydopamine (6-OHDA) lesions. Soc Neurosci Abstr 17:610

    Google Scholar 

  • Neal BS, Joyce JN (1991b) Dopamine D1 receptor behavioral responsitivity following selective lesions of the striatal patch compartment during development. Dev Brain Res 60:105–113

    Article  Google Scholar 

  • Neal BS, Joyce JN (1992) Neonatal 6-OHDA lesions differentially affect striatal D1 and D2 receptors. Synapse 11:35–46

    Article  PubMed  Google Scholar 

  • Niznik HB, Tyndale RF, Sallee FR, Gonzalez FJ, Hardwick JP, Inaba T, Kalow W (1990) The dopamine transporter and cytochrome P45OIID1 (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins. Arch Biochem Biophys 276:424–432

    Article  PubMed  Google Scholar 

  • Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand 388:1–30

    Google Scholar 

  • O'Dell SJ, La Hoste GJ, Widmark CV, Shapiro RM, Potkin SG, Marshall JF (1990) Chronic treatment with clozapine or haloperidol differentially regulates dopamine and serotonin-receptor in rat brain. Synapse 6:146–153

    Article  PubMed  Google Scholar 

  • Olson L, Seiger A, Fuxe K (1972) Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. Brain Res 44:283–288

    Article  PubMed  Google Scholar 

  • Olson L, Boreus LO, Seiger A (1973) Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholamine-containing neuron systems in the human fetal brain. Z Anat Entw Gesch 139:259–282

    Article  Google Scholar 

  • Pakkenberg B (1987) Postmortem study of chronic schizophrenic brains. Br J Psychiatry 151:744–752

    PubMed  Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonoin-1 receptors. Brain Res 346:205–230

    Article  PubMed  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985a) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    Article  PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1985b) β-Adrenoceptor subtypes in the human brain: autoradiographic localization. Brain Res 358:324–328

    Article  PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987a) Serotonin receptors in the human brain-III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21:97–122

    Article  PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987b) Serotonin receptors in the human brain-IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139

    Article  PubMed  Google Scholar 

  • Pearce RK, Seeman P, Jellinger K, Tourtellotte KW (1990) Dopamine uptake sites and dopamine receptors in Parkinson's disease and schizophrenia. Eur Neurol Suppl 1:9–14

    Google Scholar 

  • Pickar D, Labarca R, Linnoila M, Roy A, Hommer D, Everett DP (1984) Neuroleptic-induced decrease in plasma HVA and antipsychotic activity in schizophrenic patients. Science (NY) 225:954–957

    PubMed  Google Scholar 

  • Ragsdale CWJ, Graybiel AM (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. J Comp Neurol 269:506–522

    Article  PubMed  Google Scholar 

  • Ragsdale CWJ, Graybiel AM (1990) A simple ordering of neocortical areas established by the compartmental organizatio of their striatal projections. Proc Natl Acad Sci USA 87:6196–6199

    PubMed  Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of β1- and β2-adrenergic receptors in rat cerebellum and cerebral cortex. Proc Natl Acad Sci USA 81:1585–1589

    PubMed  Google Scholar 

  • Rakic P, Bourgeois J, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235

    PubMed  Google Scholar 

  • Rao PA, Molinoff PB, Joyce JN (1991) Ontogeny of dopamine D1 and D2 receptor subtypes in rat basal ganglia: a quantitative autoradiographic study. Dev Brain Res 60:167–177

    Article  Google Scholar 

  • Reynolds GP (1983) Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305:527–529

    Article  PubMed  Google Scholar 

  • Reynolds GP (1989) Beyond the dopamine hypothesis. The neurochemical pathology of schizophrenia. Br J Psychiatry 155:305–316

    PubMed  Google Scholar 

  • Reznikoff GA, Manaker S, Rhodes CH, Winokur A, Rainbow TC (1986) Localization and quantification of beta-adrenergic receptors in human brain. Neurology 36:1067–1073

    PubMed  Google Scholar 

  • Rhodes KJ, Joyce JN, Sapp DW, Marshall JF (1987) [3H]Hemicholinium-3 binding in rabbit striatum: correspondence with patchy acetylcholinesterase staining and a method for quantifying striatal compartments. Brain Res 412:400–404

    Article  PubMed  Google Scholar 

  • Richfield EK, Young AB, Penney JB (1989) Comparative distribution of D-1 and D-2 receptors in the cerebral cortex of turtles, pigeons, rats, cats, and monkeys. J Comp Neurol 286:409–426

    Article  PubMed  Google Scholar 

  • Rosene DL, Van Hoesen GW (1987) The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections. In: Jones EG, Peters A (eds) Cerebral cortex, vol 6. Plenum Press, New York, pp 345–456

    Google Scholar 

  • Rosengarten H, Friedhoff AJ (1979) Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science 203:1133–1135

    PubMed  Google Scholar 

  • Roy A (1984) Attempted suicide in chronic schizophrenia. Br J Psychiatry 144:303–306

    PubMed  Google Scholar 

  • Saunders RC, Rosene DL (1988) A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal and perirhinal cortices. J Comp Neurol 271:153–184

    Article  PubMed  Google Scholar 

  • Saunders RC, Rosene DL, Van Hoesen GW (1988) Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. J Comp Neurol 271:185–207

    Article  PubMed  Google Scholar 

  • Schotte A, Maloteaux JM, Laduron PM (1983) Characterization and regional distribution of serotonin S2-receptors in human brain. Brain Res 276:231–235

    Article  PubMed  Google Scholar 

  • Schweri MM, Jacobson AE, Lessor RA, Rice KC (1989) Metaphit inhibits dopamine transport and binding of [3H]methylphenidate, a proposed marker for the dopamine transport complex. Life Sci 45:1689–1698

    Article  PubMed  Google Scholar 

  • Seeman P, Niznik HB (1990) Dopamine receptors and transporters in Parkinson's disease and schizophrenia. FASEB J 4:2737–2744

    PubMed  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Article  PubMed  Google Scholar 

  • Seeman P, Bzowej NH, Guan HC, Bergeron C, Reynolds GP, Bird ED, Riederer P, Jellinger K, Tourtellote WW (1987) Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Neuropsychopharmacol 1:5–15

    Article  Google Scholar 

  • Shaw C, Wilkinson M, Cynader MC, Needler C, Aokic, Hall SE (1986) the laminar distributions and postnatal development of neurotransmitter and neuromodulator receptors in cat visual cortex. Brain Res Bull 16:661–671

    Article  PubMed  Google Scholar 

  • Shaw C, Aoki C, Wilkinson M, Prusky G, Cynader M (1987) Benzodiazepine ([3H]blunitrazepam) binding in car visual cortex: ontogenesis of normal characteristics and the effects of dark rearing. Dev Brain Res 37:67–76

    Article  Google Scholar 

  • Shimizu I, Prasad C (1991) Relationship between [3H]mazindol binding to dopamine uptake sites and [3H]dopamine uptake in rat striatum during aging. J Neurochem 56:575–579

    PubMed  Google Scholar 

  • Slessinger PA, Lowenstein PR, Singer HS, Walker LC, Casanova MF, Price DL, Coyle JT (1988) Development of β1- and β2-adrenergic receptors in baboon brain: an autoradiographic study using [125I]Iodocyanopindolol. J Comp Neurol 273:318–329

    Article  PubMed  Google Scholar 

  • Snyder-Keller AM (1991) Development of striatal compartmentalization following pre- or postnatal dopamine depletion. J Neurosci 11:810–821

    PubMed  Google Scholar 

  • Squire LR (1987) Memory and brain. Oxford University Press, New York

    Google Scholar 

  • Stachowiak MK, Bruno JP, Snyder AM, Stricker EM, Zigmond MJ (1984) Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats. Brain Res 291:164–167

    Article  PubMed  Google Scholar 

  • Stanley M, Virgilio J, Gushon S (1982) Tritiated imipramine binding sites are decreased in the frontal cortex of suicides. Science 18:1337–1339

    Google Scholar 

  • Stein L, Wise CD (1971) Possible aetiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171:1032–1036

    Google Scholar 

  • Stevens JR (1982) Neuropathology of schizophrenia. Arch Gen Psychiatry 39:1131–1139

    PubMed  Google Scholar 

  • Sulser F, Gillespie DD, Manier DH (1984) Physiological mechanism and significance of changes in the regulation of beta adrenoreceptors by antidepressants. Clin Neuropharmacol 7:304–305

    Google Scholar 

  • Sørensen KE, Witter MP (1983) Entorhinal efferents reach the caudato-putamen. Neurosci Lett 35:259–264

    Article  PubMed  Google Scholar 

  • Takahashi H, Nakashima S, Ohama E, Takeda S, Ikuta F (1986) Distribution of serotonin-containing cell bodies in the brainstem of the human fetus determined with immunohistochemistry using antiserotonin serum. Brain Dev 8:355–365

    PubMed  Google Scholar 

  • Tennyson VM, Barrett RE, Cohan G, Cote L, Heikkila R, Mytilineou C (1971) The developing neostriatum of the rabbit: Correlation of fluorescence histochemistry, electron microscope, endogenous dopamine levels, and [H3]dopamine uptake. Brain Res 46:251–285

    Article  Google Scholar 

  • Tillet Y (1987) Immunocytochemical localization of serotonin containing neurons in the myelencephalon, brainstem and diencephalon of the sheep. Neuroscience 23:501–527

    Article  PubMed  Google Scholar 

  • Tork I, Hornung JP (1990) Raphe nuclei and serotonin containing systems. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 1001–1022

    Google Scholar 

  • Ueda S, Sano V, Kawata M (1991) Collateral sprouting of serotonergic fibers in the cingualte cortex and the septum following cortical-hippocampal lesions. Brain Res 556:329–332

    Article  PubMed  Google Scholar 

  • Valverius P, Borg S, Valverius MR, Hoffman PL, Tabakoff B (1989) β-adrenergic receptor binding in brain of alcoholics. Exp Neurol 105:280–286

    Article  PubMed  Google Scholar 

  • Van der Kooy D (1984) Developmental relationships between opiate receptors and dopamine in the formation of caudate/putamen patches Dev Brain Res 14:300–303

    Article  Google Scholar 

  • Van der Kooy D, Fishell G (1987) Neuronal birthdate underlies the development of striatal compartments. Brain Res 401:155–161

    Article  PubMed  Google Scholar 

  • Van Hoesen GW (1982) The parahippocampal gyrus. New observation regarding its cortical connections in the monkey. TINS 5:345–350

    Google Scholar 

  • Van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer's disease. Hippocampus 1:1–8

    Article  PubMed  Google Scholar 

  • Vinar O, Molcan J, Nahunek K, Svestka J, Zapletalek M (1989) Ritanserin in schizophrenic patients. Acta Nerv Super 31:107–109

    Google Scholar 

  • Voorn P, Jorritsma-Byham B, Van Dijk C, Buijs RM (1986) The dopaminergic innervation of the ventral striatum in the rat: a light- and electron-microscopical study with antibodies against dopamine. J Comp Neurol 251:84–99

    Article  PubMed  Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Article  PubMed  Google Scholar 

  • Waeber C, Hoyer D, Palacios JM (1989a) 5-Hydroxytryptamine3 receptors in the human brain: autoradiographic visuliazation suing [3H]ICS 205–930. Neuroscience 31:393–400

    Article  PubMed  Google Scholar 

  • Waeber C, Hoyer D, Palacios JM (1989b) GR 43175: A preferential 5-HT1D agent in monkey and human brains as shown by autoradiography. Synapse 4:168–170

    Article  PubMed  Google Scholar 

  • Whitaker PM, Crow TJ, Ferrier IN (1981) Tritiated LSD binding in frontal cortex in schizophrenia. Arch Gen Psychiatry 38:278–280

    PubMed  Google Scholar 

  • Whitaker-Azmitia PM, Shemer AV, Caruso J, Molino L, Azmitia EC (1990) Role of high affinity serotonin receptors in neuronal growth. Proc NY Acad Sci 600:315–330

    Google Scholar 

  • Wiklund L, Björklund A (1980) Mechanisms of regrowth in the bulbospinal serotonin system following 5,6-dihydroxytryptamine induced axotomy. II. Fluoresence histochemical observations. Brain Res 191:129–160

    Article  Google Scholar 

  • Wilmot CA, Szczepanik AM (1989) Effect of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Res 487:288–298

    Article  PubMed  Google Scholar 

  • Wilson MA, Molliver ME (1991a) The organization of serotonergic projections to cerebral cortex in primates: regional distribution of axon terminals. Neuroscience 44:537–553

    Article  PubMed  Google Scholar 

  • Wilson MA, Molliver ME (1991b) The organization of serotonergic projections to cerebral cortex in primates: retrograde transport studies. Neuroscience 44:555–570

    Article  PubMed  Google Scholar 

  • Winblad B, Bucht G, Gottfries CG, Roos BE (1979) Monoamines and monoamine metabolites in brains from demented schizophrenics Acta Psychiatr Scand 60:17–28

    PubMed  Google Scholar 

  • Wise CD, Stein L (1973) Dopamine-β-hydroxylase deficits in the brains of schizophrenic patients. Science 181:344–347

    PubMed  Google Scholar 

  • Witelson SF, Kigar DL (1988) Asymmetry in brain function follows asymmetry in anatomical form: gross, microscopic, postmortem and imaging studies. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 1. Elsevier, Amsterdam, pp 111–142

    Google Scholar 

  • Wolfe BB, Minneman P, Molinoff PB (1982) Selective increases in the density of cerebellar β1-adrenergic receptors. Brain Res 234:474–479

    Article  PubMed  Google Scholar 

  • Young AB, Albin RL, Penney JB (1989) Neuropharmacology of basal ganglia functions: relationship to pathophysiology of movement disorders. In: Crossman AR, Sambrook MA (eds) Neural mechanism in disorders of movement. Libbey, London, pp 17–28

    Google Scholar 

  • Zahm DS (1987) Neurotensin-immunoreactive neurons in the ventral striatum of the adult rat: ventromedial caudate-putamen, nucleus accumbens and olfactory tubercle. Neurosci Lett 81:41–47

    Article  PubMed  Google Scholar 

  • Zahm DS (1992) Susbsets of neurotensin-immunoreactive neurons revealed following antagonism of the dopamine-mediated suppression of neurotensin immunoreactivity in the rat striatum. Neuroscience 46:335–350

    Article  PubMed  Google Scholar 

  • Zahm DS, Heimer L (1988) Ventral striatopallidal parts of the basal ganglia in the rat: I. Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity. J Comp Neurol 272:516–535

    Article  PubMed  Google Scholar 

  • Zezula J, Cortes R, Probst A, Palacios JM (1988) Benzodiazepine receptor sites in the human brain: autoradiographic mapping. Neuroscience 25:771–795

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyce, J.N. The dopamine hypothesis of schizophrenia: limbic interactions with serotonin and norepinephrine. Psychopharmacology 112 (Suppl 1), S16–S34 (1993). https://doi.org/10.1007/BF02245004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245004

Key words

Navigation