Skip to main content
Log in

Effects of GABAA receptor ligands on noradrenaline concentration and β-adrenoceptor binding in mouse cerebral cortex

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The present experiments investigated changes in β-adrenoceptor binding and noradrenaline stores in mouse cerebral cortex after single treatments with drugs which bind to the GABAA receptor but which attenuate the actions of GABA. Neither the GABA antagonist, securinine, nor the picrotoxin/Cl channel ligand, picrotoxin, affected noradrenaline levels or β-adrenoceptor binding. However, both the benzodiazepine inverse agonist, DMCM, and pentylenetetrazole increased noradrenaline levels 24 h after injection. Only pentylenetetrazol modified β-adrenoceptor binding: there was a significant increase in receptor number 4 days after injection, but a significant decrease after 7 days. The anxiogenic, proconvulsant drug, yohimbine, was without effect. The changes induced by DMCM and pentylenetetrazole do not seem to be related to the behavioural effects of these drugs or to their affinity for binding to benzodiazepine receptors. The possibility that these compounds have actions in addition to those at the GABAA receptor is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel MS, Clody DE, Wennogle LP, Myerson LR (1985) Effect of chronic desmethylimipramine or electroconvulsive shock on selected brain and platelet neurotransmitter recognition sites. Biochem Pharmacol 34:679–683

    Article  PubMed  Google Scholar 

  • Beutler JA, Karbon EW, Brubaker AN, Malik R, Curtis DR, Enna SJ (1985) Securinine alkaloids: a new class of GABA receptor antagonist. Brain Res 330:135–140

    Article  PubMed  Google Scholar 

  • Biswas B, Carlsson A (1977a) The effect of intracerebroventricularly administered GABA on brain monamine metabolism. Naunyn-Schmiedeberg's Arch Pharmacol 299:41–46

    Article  Google Scholar 

  • Biswas B, Carlsson A (1977b) The effect of intraperitoneally administered GABA on brain monoamine metabolism. Naunyn-Schmiedeberg's Arch Pharmacol 299:47–51

    Article  Google Scholar 

  • Bonanno G, Raiteri M (1987) Carriers for GABA and noradrenaline uptake exist on the same nerve terminal in rat hippocampus. Eur J Pharmacol 136:303–310

    Article  PubMed  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemass DN, Shaw J, Turnbull M (1980) (−)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94

    Article  PubMed  Google Scholar 

  • Buckholtz NS, Boggan WO (1977) Monoamine oxidase inhibition in brain and liver produced by β-carbolines: structure activity relationships and substrate specificity. Biochem Pharmacol 26:1991–1996

    Article  PubMed  Google Scholar 

  • Chapman AG, De Sarro GB, Premachandra M, Meldrum BS (1987) Bidirectional effects of β-carbolines in reflex epilepsy. Brain Res Bull 19:337–346

    Article  PubMed  Google Scholar 

  • Charney DS, Heninger GR, Redmond DE (1983) Yohimbine induced anxiety and increased noradrenergic function in humans: effects of diazepam and clonidine. Life Sci 33:19–29

    Article  PubMed  Google Scholar 

  • Chavoix C, Hantraye P, Brouillet E, Guibert B, Fukuda H, De la Sayette V, Fournier D, Naquet R, Maziere M (1988) Status epilepticus induced by pentylenetetrazole modulates in vivo [11C]Ro 15-1788 binding to benzodiazepine receptors. Effects of ligands acting at the supramolecular receptor complex. Eur J Pharmacol 146:207–214

    Article  PubMed  Google Scholar 

  • Cowen PJ, Green AR, Nutt DJ, Martin IL (1981) Ethyl-β-carboline carboxylate lowers seizure threshold and antagonizes flurazepam-induced sedation in rats. Nature 290:54–55

    Article  PubMed  Google Scholar 

  • Dalkara T, Saederup E, Squires RF, Krnjevic K (1986) Iontophoretic studies on rat hippocampus with some novel GABA antagonists. Life Sci 39:415–422

    Article  PubMed  Google Scholar 

  • Dennis T, Curet O, Nishikawa T, Scatton B (1985) Further evidence for, and nature of, the facilitatory GABAergic influence on central noradrenergic transmission. Naunyn-Schmiedeberg's Arch Pharmacol 331:225–234

    Article  Google Scholar 

  • Dorow R, Horowski R, Paschelke G, Amin M, Braestrup C (1983) Severe anxiety induced by FG7142 a β-carboline ligand for benzodiazepine receptors. Lancet II:98–99

    Article  Google Scholar 

  • Dunn RW, Fielding S (1987) Yohimbine-induced seizures in mice: a model predictive of potential anxiolytic and GABA-mimetic agents. Drug Dev Res 10:177–188

    Article  Google Scholar 

  • File SE, Pellow S, Braestrup C (1985) Effects of the β-carboline, FG7142, in the social interaction test of anxiety and the holeboard:. correlations between behaviour and plasma concentrations. Pharmacol Biochem Behav 22:941–944

    Article  PubMed  Google Scholar 

  • File SE, Curle PF, Baldwin HA, Neal MJ (1987) Anxiety in the rat is associated with decreased release of 5-HT and glycine from the hippocampus. Neurosci Lett 83:318–322

    Article  PubMed  Google Scholar 

  • Fletcher A, Forster EA (1988) A proconvulsant action of selective α2-adrenoceptor antagonists. Eur J Pharmacol 151:27–34

    Article  PubMed  Google Scholar 

  • Fung S-C, Fillenz M (1983) The role of pre-synaptic GABA and benzodiazepine receptors in the control of noradrenaline release in rat hippocampus. Neurosci Lett 42:61–66

    Article  PubMed  Google Scholar 

  • Gettins D, Goldsack N, Ibegbuna V, Stanford SC (1988) A single injection of pentylenetetrazole or picrotoxin modifies noradrenaline stores and β-adrenoceptors in mouse cerebral cortex. Br J Pharmacol 95:887P

    Google Scholar 

  • Glover V, Liebowitz J, Armanda I, Sandler M (1982) β-carbolines as selective monoamine oxidase inhibitors: in vivo implications. J Neural Transm 54:209–218

    Article  PubMed  Google Scholar 

  • Goldberg MR, Robertson D, (1983) Yohimbine: a pharmacological probe for study of the α2-adrenoceptor. Pharmacol Rev 35:143–180

    PubMed  Google Scholar 

  • Grecksck G, de Carvalho LP, Venault P, Chapouthier G, Rossier J (1983) Convulsions induced by submaximal dose of pentylenetetrazole in mice are antagonised by the benzodiazepine antagonist Ro 15-1788. Life Sci 32:2579–2584

    Article  PubMed  Google Scholar 

  • Johnston AL, File SE (1989) Yohimbine's anxiogenic action: evidence for noradrenergic and dopaminergic sites. Pharmacol Biochem Behav 32: 151–156

    Article  PubMed  Google Scholar 

  • Lal H, Shearman G, Bennett D, Horvatt A (1983) Yohimbine, a β-carboline with behavioural and neurochemical properties common to anxiogenic drugs. Soc Neurosci Abstr 9:437

    Google Scholar 

  • Langer SZ, Arbilla A (1988) Limitations of the benzodiazepine nomenclature: a proposal for a pharmacological classification as omega receptor subtypes. Fundam Clin Pharmacol 2:159–170

    PubMed  Google Scholar 

  • Lazarova M, Samanin R (1983) Potentiation by yohimbine of pentylenetetrazole-induced seizures in rats: role of α2-adrenergic receptors. Pharmacol Res Commun 15:419–425

    PubMed  Google Scholar 

  • Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Kohler M, Fujdai N, Rodriguez HF, Stephenson A, Darlison MG, Barnard EA, Seeburg PH (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79

    Article  PubMed  Google Scholar 

  • Lolait SJ, O'Carroll A-M, Kusano K, Mahan L.C. (1989) Pharmacological characterization amd region-specific expression in brain of the β2- and β3-subunits of the rat GABAA-receptor. FEBS Lett 258:17–21

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–273

    PubMed  Google Scholar 

  • Munson PJ, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    Article  PubMed  Google Scholar 

  • Olsen RW, Tobin AJ (1990) Molecular biology of GABAA receptors. FASEB J 4:1469–1480

    PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE (1985) Are the anxiogenic effects of yohimbine mediated by its action at benzodiazepine receptors? Neurosci Lett 55:5–9

    Article  PubMed  Google Scholar 

  • Prichett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PC, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 238:582–585

    Article  Google Scholar 

  • Rehavi M, Skolnick P, Paul SM (1982) Effects of tetrazole derivatives on [3H]diazepam binding in vitro: correlation with convulsant potency. Eur J Pharmacol 78:352–356

    Article  Google Scholar 

  • Scatton B, Serrano A (1986) GABA mimetics increase extracellular DOPAC (as measured by in vivo voltammetry) in rat locus coeruleus. Naunyn-Schmiedeberg's Arch Pharmacol 332:380–383

    Article  Google Scholar 

  • Scatton B, Lloyd KG, Zivkovic B, Dennis T, Claustre Y, Dedek J, Arbilla S, Langer SZ, Bartholini G (1987) Fengabine, a novel antidepressant GABAergic agent. II. Effect on cerebral noradrenergic, serotonergic and GABAergic transmission in the rat. J Pharmacol Exp Ther 241:251–257

    PubMed  Google Scholar 

  • Schofield PR (1989) The GABAA receptor: molecular biology reveals a complex picture. TIPS 10:476–478

    PubMed  Google Scholar 

  • Siegel RE (1988) The mRNAs encoding GABAA/benzodiazepine receptor subunits are localized in different cell populations of the bovine cerebellum. Neuron 1:579–584

    Article  PubMed  Google Scholar 

  • Simmonds MA (1982) Classification of some GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus. Eur J Pharmacol 80:347–358

    Article  PubMed  Google Scholar 

  • Squires RF, Saederup E (1987) GABAA receptor blockers reverse the inhibitory effect of GABA on brain specific [35S]TBPS binding. Brain Res 414:357–364

    Article  PubMed  Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saederup E (1983)35S-t-butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to GABAA and ion recognition sites. Mol Pharmacol 23:326–336

    PubMed  Google Scholar 

  • Squires RF, Saederup E, Crawley JN, Skolnick P, Paul SM (1984) Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sci 35:1439–1444

    Article  PubMed  Google Scholar 

  • Stanford SC, Jefferys JGR (1985) Down regulation of α2-and β-adrenoceptor binding sites in rat cortex caused by amygdalar kindling. Exp Neurol 90:108–117

    Article  PubMed  Google Scholar 

  • Stanford SC, Little HJ, Nutt DJ, Taylor SC (1986a) Effects of chronic treatment with benzodiazepine receptor ligands on cortical adrenoceptors. Eur J Pharmacol 129:181–184

    Article  PubMed  Google Scholar 

  • Stanford SC, Little HJ, Nutt DJ, Taylor SC (1986b) A single dose of FG7142 causes long-term increases in mouse cortical β-adrenoceptors. Eur J Pharmacol 134:313–319

    Article  Google Scholar 

  • Stanford SC, Baldwin HA, File SE (1989) Effects of a single or repeated administration of the benzodiazepine inverse agonist FG7142 on behaviour and cortical adrenoceptor binding in the rat. Psychopharmacology 98:417–424

    Article  PubMed  Google Scholar 

  • Stephens DN, Kehr W, Schneider HH, Schmiechen R (1984) β-Carbolines with agonistic and inverse agonistic properties at benzodiazepine receptors of the rat. Neurosci Lett 47:333–338

    Article  PubMed  Google Scholar 

  • Study RE, Barker JL (1981) Diazepam and (−)pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of GABA responses in cultured central neurones. Proc Natl Acad Sci USA 78:7180–7184

    PubMed  Google Scholar 

  • Treit D (1987) Ro 15-1788, CGS 8216, picrotoxin and pentylenetetrazole: do they antagonize anxiolytic drug effects through an anxiogenic action? Brain Res Bull 19:401–405

    Article  PubMed  Google Scholar 

  • Ymer S, Draguhn A, Kohler M, Schofield PR, Seeburg PH (1989a) Sequence and expression of a novel GABAA receptor α-subunit. FEBS Lett 258:119–122

    Article  PubMed  Google Scholar 

  • Ymer S, Schofield PR, Draguhn A, Werner P, Kohler M, Seeburg PH (1989b) GABAA receptor subunit heterogeneity: functional expression of cloned cDNAs. EMBO J 8:1665–1670

    PubMed  Google Scholar 

  • Zhang H, Rosenberg HC, Tietz EI (1989) Injection of benzodiazepines but not GABA or muscimol into pars reticulata of substantia nigra suppresses pentylenetetrazole seizures. Brain Res 488:73–79

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gettins, D., Goldsack, N., Ibegbuna, V. et al. Effects of GABAA receptor ligands on noradrenaline concentration and β-adrenoceptor binding in mouse cerebral cortex. Psychopharmacology 102, 357–363 (1990). https://doi.org/10.1007/BF02244104

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02244104

Key words

Navigation