Skip to main content
Log in

Allele-specific suppression of temperature-sensitive mutations of theSaccharomyces cerevisiae RAD52 gene

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We screened forrad52 suppressors against temperature-sensitive (ts), missense, nonsense, and deletionrad52 mutations. Except for the deletion strain all mutants yielded suppressor candidates, indicating that suppressors completely bypassing the need forRAD52 are rare. Characterization of seven, recessive extragenic suppressors from our screen and two previously identified suppressors revealed that nearly all exhibit allele specificity. The allele specificity is positional in that suppressors that suppress a is mutation in the C-terminal third of the coding region do not suppress three is mutations in the N-terminal third. Conversly, suppressors against one of the three N-terminal mutations suppress more than one of these mutations but not the C-terminal mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adzuma K, Ogawa T, Ogawa H (1984) Primary structure of theRAD52 gene inSaccharomyces cerevisiae. Mol Cell Biol 4:2735–2744

    PubMed  Google Scholar 

  • Basile G, Aker M, Mortimer RK (1992) Nucleotide sequence and transcriptional regulation of the yeast recombinational repair geneRAD51. Mol Cell Biol 12:3225–3246

    Google Scholar 

  • Becker DM, Guarente L (1991) Electroporation of yeast. Methods Enzymol 194:182–187

    PubMed  Google Scholar 

  • Boundy-Mills KL, Livingston DM (1993) ASaccharomyces cerevisiae RAD52 allele expressing a C-terminal truncation protein: activities and intragenic complementation of missense mutations. Genetics 133:39–49

    PubMed  Google Scholar 

  • Calderon IL, Contopoulou CR, Mortimer RK (1983) Isolation and Characterization of yeast DNA repair genes. Curr Genet 93-100

  • Donovan JW, Milne GT, Weaver DT (1994) Homotypic and heterotypic protein associations control Rad51 function in doublestrand break repair. Genes Dev 8:2552–2562

    PubMed  Google Scholar 

  • Dornfeld KJ, Livingston DM (1991) Effects of controlled RAD52 expression on repair and recombination inSaccharomyces cerevisiae. Mol Cell Biol 11:2013–2017

    PubMed  Google Scholar 

  • Firmenich AE, Elias-Arnanz M, Berg P (1995) A novel allele ofSaccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible byRAD52. Mol Cell Biol 15:1620–1631

    PubMed  Google Scholar 

  • Game JC (1993) DNA double-strand breaks and theRAD50-RAD57 genes inSaccharomyces. Semin Cancer Biol 4:73–83

    PubMed  Google Scholar 

  • Hartman PE, Roth JR (1973) Mechanisms of suppression. Adv Genet 17:1–105

    PubMed  Google Scholar 

  • Haynes RH, Kunz BA (1981) DNA repair and mutagenesis in yeast In: Strathen JN, Jones EW, Broach JR (eds) The molecular biology of the yeastSaccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 371–414

    Google Scholar 

  • Huffaker TC, Hoyt MA, Botstein D (1987) Genetic analysis of the yeast cytoskeleton. Annu Rev Genet 21:259–284

    PubMed  Google Scholar 

  • Johnston M, Davis RW (1984) Sequences that regulate the divergentGAL1-GAL10 promoter inSaccharomyces cerevisiae. Mol Cell Biol 4:1440–1448

    PubMed  Google Scholar 

  • Kaytor MD, Livingston DM (1994)Saccharomyces cerevisiae RAD52 alleles temperature-sensitive for the repair of doublestrand breaks. Genetics 137:933–944

    PubMed  Google Scholar 

  • Milne GT, Weaver DT (1993) Dominant negative alleles ofRAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev 7:1755–1765

    PubMed  Google Scholar 

  • Milne GT, Ho T, Weaver DT (1995) Modulation of Saccharomyces cerevisiae DNA double-strand break repair bySRS2 andRAD51. Genetics 139:1189–1199

    PubMed  Google Scholar 

  • Resnick MA (1969) Genetic control of radiation sensitivity inSaccharomyces cerevisiae. Genetics 62:519–531

    PubMed  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    PubMed  Google Scholar 

  • Scherer S, Davis RW (1979) Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci USA 76:4951–4955

    PubMed  Google Scholar 

  • Schiestl RH, Gietz RG (1989) High-efficiency transformation of intact yeast cells using single-stranded nucleic acid as a carrier. Curr Genet 16:339–346

    PubMed  Google Scholar 

  • Schild D (1995) Suppression of a new allele of the yeastRAD52 gene by over-expression ofRAD51, mutations insrs2 andccr4, or mating-type heterozygosity. Genetics 140:115–127

    PubMed  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    PubMed  Google Scholar 

  • Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination inS. cerevisiae is a RecA-like protein. Cell 69:457–470

    PubMed  Google Scholar 

  • Shore D, Squire M, Nasmyth KA (1984) Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 3:2817–2823

    PubMed  Google Scholar 

  • Smith J, Rothstein R (1995) A mutation in the gene encoding theSaccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates aRAD52-independent pathway for direct-repeat recombination. Mol Cell Biol 15:1632–1641

    PubMed  Google Scholar 

  • Strike TL (1978) Characterization of mutants of yeast sensitive to X-rays. Thesis, University of California, Davis

    Google Scholar 

  • Stotz A, Linder P (1990) TheADE2 gene ofSaccharomyces cerevisiae: sequence and new vectors. Gene 95:91–98

    PubMed  Google Scholar 

  • Tsao SGS, Brunk CF, Pearlman RE (1983) Hybridization of nucleic acids directly in agarose gels. Anal Biochem 131:365–372

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R.J. Rothstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaytor, M.D., Livingston, D.M. Allele-specific suppression of temperature-sensitive mutations of theSaccharomyces cerevisiae RAD52 gene. Curr Genet 29, 203–210 (1996). https://doi.org/10.1007/BF02221549

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02221549

Key words

Navigation