Robust stability of a class of neural networks with time delays

  • V. L. Kharitonov
  • A. D. B. Paice
Article

Abstract

A stability analysis of the equilibrium position for a given class of Hopfield neural networks with time delays is presented. The robustness of the equilibrium stability with respect to variations in the time delays, system parameters, and interconnection matrix is analyzed. Three approaches are presented which account in various ways for stability of the equilibrium with respect to these perturbations.

Key words

Hopfield neural networks time delays robust stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. R. Barmish.New Tools for Robustness of Linear Systems, Macmillan, New York, 1994.Google Scholar
  2. 2.
    A. C. Bartlett, C. V. Hollot, and H. Lin. Root location of an entire polytope of polynomials: It suffices to check the edges.Math. Control Signals Syst. 1, 61–71, 1988.Google Scholar
  3. 3.
    J. Bélair. Stability in a model of a delayed neural network.J. Dynam. Diff. Eq. 5(4), 607–623, 1993.Google Scholar
  4. 4.
    R. Bellman and K. L. Cook.Differential-Difference Equations, Academic Press, New York, 1963.Google Scholar
  5. 5.
    M Fu, A. W. Olbrot, and M. P. Polis. Robust stability for time-delay systems: The edge theorem and graphical tests.IEEE Trans. AC-34, 813–820, 1989.Google Scholar
  6. 6.
    A. Guez, P. Protopopsecu, and J. Barhen. On the stability, storage capacity and design of nonlinear continuous neural networks.IEEE Trans. Syst. Man Cybernet. 18(1), 80–87, 1988.Google Scholar
  7. 7.
    D. Hinrichsen and A. J. Pritchard. Real and complex stability radii: A survey. In D. Hinrichsen and B. Mårtensson (eds.),Control of Uncertain Systems, Birkhäuser, Boston, 1990, pp. 119–162.Google Scholar
  8. 8.
    J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons.Proc. Natl. Acad. Sci. 81 May, 3088–3092, 1984.Google Scholar
  9. 9.
    V. L. Kharitonov and A. P. Zhabko. Robust stability of time-delay systems.IEEE Trans. AC-39, 2388–2397, 1994.Google Scholar
  10. 10.
    C. M. Marcus and R. M. Westervelt. Stability of analog neural networks with delay.Phys. Rev. A 39, 347–359, 1989.Google Scholar
  11. 11.
    B. Morton and R. MacAfoos. A mu-test for real-parameter variations.Proc. Am. Control Conf., pp. 135–138, 1985.Google Scholar
  12. 12.
    A. Packard and J. C. Doyle. The complex structured singular value.Automatica 29(1), 71–109, 1993.Google Scholar
  13. 13.
    L. S. Pontryagin. On zeros of some elementary transcendental functions.Trans. AMS Ser. 2 1, 95–100, 1955.Google Scholar
  14. 14.
    L. Qui, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and J. C. Doyle. On the real structured stability radius.Proc. 32nd CDC, 1993.Google Scholar
  15. 15.
    E. D. Sontag. Neural networks for control.ECC '93 Book, 1993.Google Scholar
  16. 16.
    N. G. Tchebotareff and N. N. Meimann. The Routh-Hurwitz problem for polynomials and entire functions.Proc. Math. Inst. Acad. Sci. USSR, 1949 (in Russian).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. L. Kharitonov
    • 1
  • A. D. B. Paice
    • 2
  1. 1.Department of Applied Math and ControlSt. Petersburg UniversitySt. PetersburgRussia
  2. 2.Institute for Dynamical SystemsUniversity of BremenBremenGermany

Personalised recommendations