Skip to main content
Log in

Finite-Time Stabilization of Neutral Hopfield Neural Networks with Mixed Delays

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this article, we investigate the problem of finite time stabilization (FTS) of neutral Hopfield neural networks (NHNNs) with mixed delays including infinite distributed time delays. Firstly, general conditions on the control law are established to ensure the FTS of a neutral class of NN investigated here. Then, some specific conditions in the form of linear matrix inequalities which can be numerically checked are derived by constructing different kinds of controllers which include the delay-dependent and delay-free controller. Secondly, for practical applications, based on the Lyapunov–Krasovskii-functional analysis, we design a continuous controller able to stabilize in finite time the NHNNs and overcome the chattering phenomena simultaneously. Thirdly, the restriction of the boundedness of activation functions is removed. Finally, three numerical examples accompanied by graphical illustrations are given to illuminate our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ali MS, Gunasekaran N, Rani ME (2017) Robust stability of Hopfield delayed neural networks via an augmented L-K functional. Neurocomputing 234:198–204

    Article  Google Scholar 

  2. Aouiti C (2016) Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays. Cogn Neurodyn 10(6):573–591

    Article  MathSciNet  Google Scholar 

  3. Aouiti C (2016) Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2558-3

    Article  Google Scholar 

  4. Aouiti C, Alimi AM, Karray F, Maalej A (2005) The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm. Fuzzy Sets Syst 154(2):251–274

    Article  MathSciNet  Google Scholar 

  5. Aouiti C, Alimi AM, Maalej A (2002) A genetic-designed beta basis function neural network for multi-variable functions approximation. Syst Anal Model Simul 42(7):975–1009

    Article  Google Scholar 

  6. Aouiti C, Coirault P, Miaadi F, Moulay E (2017) Finite time boundedness of neutral high-order Hopfield neural networks with time delay in the leakage term and mixed time delays. Neurocomputing 260:378–392

    Article  Google Scholar 

  7. Aouiti C, M’hamdi MS, Cao J, Alsaedi A (2017) Piecewise pseudo almost periodic solution for impulsive generalised high-order Hopfield neural networks with leakage delays. Neural Process Lett 45(2):615–648

    Article  Google Scholar 

  8. Aouiti C, M’hamdi MS, Chérif F (2017) New results for impulsive recurrent neural networks with time-varying coefficients and mixed delays. Neural Process Lett. https://doi.org/10.1007/s11063-017-9601-y

    Article  Google Scholar 

  9. Aouiti C, Mhamdi MS, Touati A (2016) Pseudo almost automorphic solutions of recurrent neural networks with time-varying coefficients and mixed delays. Neural Process Lett 45(1):121–140

    Article  Google Scholar 

  10. Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences, classics in applied mathematics, vol 9. SIAM, New Delhi

    Book  Google Scholar 

  11. Bernuau E, Perruquetti W, Efimov D, Moulay E (2015) Robust finite-time output feedback stabilisation of the double integrator. Int J Control 88(3):451–460

    Article  MathSciNet  Google Scholar 

  12. Bhat SP, Bernstein D.S (1995) Lyapunov analysis of finite-time differential equations. In: American control conference, pp 1831–1832

  13. Bhat SP, Bernstein DS (1997) Finite-time stability of homogeneous systems. Am Control Conf 4:2513–2514

    Google Scholar 

  14. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766

    Article  MathSciNet  Google Scholar 

  15. Chen L, Zhao H (2009) New LMI conditions for global exponential stability of cellular neural networks with delays. Nonlinear Anal Real World Appl 10(1):287–297

    Article  MathSciNet  Google Scholar 

  16. Chen X, Li Z, Song Q, Hu J, Tan Y (2017) Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties. Neural Netw 91:55–65

    Article  Google Scholar 

  17. Cooper B (2002) Stability analysis of higher-order neural networks for combinatorial optimization. Int J Neural Syst 12(03n04):177–186

    Article  Google Scholar 

  18. Du H, Li S, Qian C (2011) Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans Autom Control 56(11):2711–2717

    Article  MathSciNet  Google Scholar 

  19. Forti M, Manetti S, Marini M (1992) A condition for global convergence of a class of symmetric neural circuits. IEEE Trans Circuits Syst I Fundam Theory Appl 39(6):480–483

    Article  Google Scholar 

  20. Forti M, Nistri P, Quincampoix M (2004) Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans Circuits Syst I Regul Pap 51(9):1741–1754

    Article  MathSciNet  Google Scholar 

  21. Forti M, Tesi A (1995) New conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans Circuits Syst I Fundam Theory Appl 42(7):354–366

    Article  MathSciNet  Google Scholar 

  22. Graham JH, Zurada JM (1996) A neural network approach for safety and collision avoidance in robotic systems. Reliab Eng Syst Saf 53(3):327–338

    Article  Google Scholar 

  23. Haimo VT (1986) Finite time controllers. SIAM J Control Optim 24(4):760–770

    Article  MathSciNet  Google Scholar 

  24. Hale JK (1977) Theory of functional differential equations. Applied mathematical sciences, vol 3. Springer, New York

    Book  Google Scholar 

  25. Hale JK (1980) Ordinary differential equations. Pure and applied mathematics XXI. Krieger, Malabar

    Google Scholar 

  26. Hopfield JJ, Tank DW (1985) neural computation of decisions in optimization problems. Biol Cybern 52(3):141–152

    MATH  Google Scholar 

  27. Huang C, Cao J, Xiao M, Alsaedi A, Alsaadi FE (2017) Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Appl Math Comput 293:293–310

    MathSciNet  Google Scholar 

  28. Kartsatos AG (1993) Advanced ordinary differential equations. Hindawi, Cairo

    MATH  Google Scholar 

  29. Kosmatopoulos EB, Polycarpou MM, Christodoulou MA, Ioannou PA (1995) High-order neural network structures for identification of dynamical systems. IEEE Trans Neural Netw 6(2):422–431

    Article  Google Scholar 

  30. Léchappé V, Rouquet S, González A, Plestan F, De León J, Moulay E, Glumineau A (2016) Delay estimation and predictive control of uncertain systems with input delay: application to a DC motor. IEEE Trans Industr Electron 63(9):5849–5857

    Article  Google Scholar 

  31. Li X, Bohner M, Wang CK (2015) Impulsive differential equations: periodic solutions and applications. Automatica 52:173–178

    Article  MathSciNet  Google Scholar 

  32. Li X, Cao J (2010) Delay-dependent stability of neural networks of neutral type with time delay in the leakage term. Nonlinearity 23(7):1709

    Article  MathSciNet  Google Scholar 

  33. Li X, Cao J (2017) An impulsive delay inequality involving unbounded time-varying delay and applications. IEEE Trans Autom Control 62(7):3618–3625

    Article  MathSciNet  Google Scholar 

  34. Li X, Fu X (2013) Effect of leakage time-varying delay on stability of nonlinear differential systems. J Franklin Inst 350(6):1335–1344

    Article  MathSciNet  Google Scholar 

  35. Li X, Song S (2013) Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays. IEEE Trans Neural Netw Learn Syst 24(6):868–877

    Article  Google Scholar 

  36. Li X, Song S (2017) Stabilization of delay systems: delay-dependent impulsive control. IEEE Trans Autom Control 62(1):406–411

    Article  MathSciNet  Google Scholar 

  37. Li X, Song S, Wu J (2018) Impulsive control of unstable neural networks with unbounded time-varying delays. Sci China Inf Sci 61(1):012–203

    Google Scholar 

  38. Li X, Wu J (2016) Stability of nonlinear differential systems with state-dependent delayed impulses. Automatica 64:63–69

    Article  MathSciNet  Google Scholar 

  39. Li X, Zhang X, Song S (2017) Effect of delayed impulses on input-to-state stability of nonlinear systems. Automatica 76:378–382

    Article  MathSciNet  Google Scholar 

  40. Li Y, Yang X, Shi L (2016) Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations. Neurocomputing 185:242–253

    Article  Google Scholar 

  41. Liu X, Ho DW, Yu W, Cao J (2014) A new switching design to finite-time stabilization of nonlinear systems with applications to neural networks. Neural Networks 57:94–102

    Article  Google Scholar 

  42. Liu X, Jiang N, Cao J, Wang S, Wang Z (2013) Finite-time stochastic stabilization for BAM neural networks with uncertainties. J Franklin Inst 350(8):2109–2123

    Article  MathSciNet  Google Scholar 

  43. Liu X, Park JH, Jiang N, Cao J (2014) Nonsmooth finite-time stabilization of neural networks with discontinuous activations. Neural Netw 52:25–32

    Article  Google Scholar 

  44. Liu Y, Zhang D, Lou J, Lu J, Cao J (2017) Stability analysis of quaternion-valued neural networks: Decomposition and direct approaches. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2017.2755697

    Article  Google Scholar 

  45. Lofberg J (2004) Yalmip : a Toolbox for modeling and optimization in MATLAB. In: IEEE international symposium on computer aided control systems design, pp 284–289

  46. Ménard T, Moulay E, Perruquetti W (2017) Corrections to a global high-gain finite-time observer. IEEE Trans Autom Control 62(1):509–510

    Article  Google Scholar 

  47. Menard T, Moulay E, Perruquetti W (2017) Fixed-time observer with simple gains for uncertain systems. Automatica 81:438–446

    Article  MathSciNet  Google Scholar 

  48. M’hamdi MS, Aouiti C, Touati A, Alimi AM, Snasel V (2016) Weighted pseudo almost-periodic solutions of shunting inhibitory cellular neural networks with mixed delays. Acta Math Sci 36(6):1662–1682

    Article  MathSciNet  Google Scholar 

  49. Michel AN, Farrell JA, Porod W (1989) Qualitative analysis of neural networks. IEEE Trans Circuits Syst 36(2):229–243

    Article  MathSciNet  Google Scholar 

  50. Moulay E, Dambrine M, Yeganefar N, Perruquetti W (2008) Finite-time stability and stabilization of time-delay systems. Syst Control Lett 57(7):561–566

    Article  MathSciNet  Google Scholar 

  51. Moulay E, Perruquetti W (2006) Finite time stability and stabilization of a class of continuous systems. J Math Anal Appl 323(2):1430–1443

    Article  MathSciNet  Google Scholar 

  52. Perantonis SJ, Lisboa PJG (1992) Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers. IEEE Trans Neural Netw 3(2):241–251

    Article  Google Scholar 

  53. Perruquetti W, Floquet T, Moulay E (2008) Finite-time observers: application to secure communication. IEEE Trans Autom Control 53(1):356–360

    Article  MathSciNet  Google Scholar 

  54. Phat VN, Trinh H (2010) Exponential stabilization of neural networks with various activation functions and mixed time-varying delays. IEEE Trans Neural Netw 21(7):1180–1184

    Article  Google Scholar 

  55. Savkovic-Stevanovic J (1993) A neural network model for analysis and optimization of processes. Comput Chem Eng 17:S411–S416

    Article  Google Scholar 

  56. Shen H, Park JH, Wu ZG (2014) Finite-time synchronization control for uncertain markov jump neural networks with input constraints. Nonlinear Dyn 77(4):1709–1720

    Article  MathSciNet  Google Scholar 

  57. Shen J, Cao J (2011) Finite-time synchronization of coupled neural networks via discontinuous controllers. Cogn Neurodyn 5(4):373–385

    Article  Google Scholar 

  58. Shi L, Yang X, Li Y, Feng Z (2016) Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn 83(1–2):75–87

    Article  MathSciNet  Google Scholar 

  59. Stamova I, Stamov T, Li X (2014) Global exponential stability of a class of impulsive cellular neural networks with supremums. Int J Adapt Control Signal Process 28(11):1227–1239

    Article  MathSciNet  Google Scholar 

  60. Su T, Yang X (2016) Finite time synchronization of competitive neural networks with mixed delays. Discrete Contin Dyn Syst Ser B 21(10):3655–3667

    Article  MathSciNet  Google Scholar 

  61. Sun J, Shen Y, Yin Q, Xu C (2013) Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos Interdiscip J Nonlinear Sci 23(1):013140

    Article  MathSciNet  Google Scholar 

  62. Tang Y, Gao H, Zhang W, Kurths J (2015) Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses. Automatica 53:346–354

    Article  MathSciNet  Google Scholar 

  63. Tang Y, Xing X, Karimi HR, Kocarev L, Kurths J (2016) Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems. IEEE Trans Industr Electron 63(2):1299–1307

    Article  Google Scholar 

  64. Tank D, Hopfield J (1986) Simple’neural’optimization networks: an a/d converter, signal decision circuit, and a linear programming circuit. IEEE Trans Circuits Syst 33(5):533–541

    Article  Google Scholar 

  65. Wang F, Liu M (2016) Global exponential stability of high-order bidirectional associative memory (BAM) neural networks with time delays in leakage terms. Neurocomputing 177:515–528

    Article  Google Scholar 

  66. Wang L, Shen Y (2015) Finite-time stabilizability and instabilizability of delayed memristive neural networks with nonlinear discontinuous controller. IEEE Trans Neural Netw Learn Syst 26(11):2914–2924

    Article  MathSciNet  Google Scholar 

  67. Wang L, Shen Y, Ding Z (2015) Finite time stabilization of delayed neural networks. Neural Netw 70:74–80

    Article  Google Scholar 

  68. Wang L, Shen Y, Sheng Y (2016) Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control. Neural Netw 76:46–54

    Article  Google Scholar 

  69. Wu R, Lu Y, Chen L (2015) Finite-time stability of fractional delayed neural networks. Neurocomputing 149:700–707

    Article  Google Scholar 

  70. Wu X, Tang Y, Zhang W (2016) Stability analysis of stochastic delayed systems with an application to multi-agent systems. IEEE Trans Autom Control 61(12):4143–4149

    Article  Google Scholar 

  71. Yang X (2014) Can neural networks with arbitrary delays be finite-timely synchronized? Neurocomputing 143:275–281

    Article  Google Scholar 

  72. Yang X, Cao J, Ho DW (2015) Exponential synchronization of discontinuous neural networks with time-varying mixed delays via state feedback and impulsive control. Cogn Neurodyn 9(2):113–128

    Article  Google Scholar 

  73. Yang X, Cao J, Song Q, Xu C, Feng J (2017) Finite-time synchronization of coupled markovian discontinuous neural networks with mixed delays. Circuits Syst Signal Process 36(5):1860–1889

    Article  Google Scholar 

  74. Yang X, Lam J, Ho DWC, Feng Z (2017) Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans Autom Control 62(11):5511–5521

    Article  MathSciNet  Google Scholar 

  75. Yang X, Lu J (2016) Finite-time synchronization of coupled networks with markovian topology and impulsive effects. IEEE Trans Autom Control 61(8):2256–2261

    Article  MathSciNet  Google Scholar 

  76. Yang X, Song Q, Liang J, He B (2015) Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations. J Franklin Inst 352(10):4382–4406

    Article  MathSciNet  Google Scholar 

  77. Zhang H, Wang Z, Liu D (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans Neural Netw Learn Syst 25(7):1229–1262

    Article  Google Scholar 

  78. Zhang W, Tang Y, Huang T, Kurths J (2017) Sampled-data consensus of linear multi-agent systems with packet losses. IEEE Trans Neural Netw Learn Syst 28(11):2516–2527

    Article  MathSciNet  Google Scholar 

  79. Zhang W, Yang X, Xu C, Feng J, Li C (2017) Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2017.2740431

    Article  Google Scholar 

  80. Zhang X, Li X (2016) Input-to-state stability of non-linear systems with distributed-delayed impulses. IET Control Theory Appl 11(1):81–89

    Article  MathSciNet  Google Scholar 

  81. Zhou C, Zhang W, Yang X, Xu C, Feng J (2017) Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations. Neural Process Lett 46(1):271–291

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Patrick Coirault and Prof. Emmanuel Moulay for there patient guidance and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaouki Aouiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouiti, C., Miaadi, F. Finite-Time Stabilization of Neutral Hopfield Neural Networks with Mixed Delays. Neural Process Lett 48, 1645–1669 (2018). https://doi.org/10.1007/s11063-018-9791-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9791-y

Keywords

Navigation