Skip to main content
Log in

Fused cells of frog proximal tubule: I. Basic membrane properties

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Proximal tubular cells of the frog (Rana esculenta) kidney were fused within an isolated tubule portion to giant cells according to the polyethylene-glycol fusion method. Cell membrane potentials (V m ) were measured while cells were superfused with varioús experimental solutions. Rapid concentration stepchanges of different ions allowed to calculate the respective transference numbers (t ion). In some experiments the specific cell membrane resistances (R m ) were evaluated by measuringV m induced by short current pulses injected into the cell with a second electrode. The experiments reveal: i) Fused cells of the proximal tubule exhibit aV m of −49.5±1.6 mV (n=65). ii) Addition of glucose to the perfusate yields a transient depolarization, consistent with a rheogenic Na/glucose cotransport system. iii) In absence of organic substrates the whole cell membrane conductance is made up of K+ and HCO3, iv) There is a positive relationship betweenV m andtK+ and a negative relationship betweenV m andtHCO 3 . v) HCO 3 -inducedV m changes are attenuated or abolished when Na+ is replaced with choline+, consistent with a rheogenic Na+/HCO 3 cotransport system. vi) Replacement of Na+ by choline+ depolarizesV m and increasesR m by about 50%; addition of 3 mmol/liter Ba2+ to the Na+-free perfusate increasesR m by about 58% compared to the initial control value. vii) There is no measurable cell membrane Cl conductance. We conclude that fused cells of proximal tubule exert both luminal and peritubular membrane properties. In absence of organic substrates the cell membrane potential is determined by the HCO 3 and K+ transport systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anagnostopoulos, T., Planelles, G. 1979. Organic anion permeation at the proximal tubule ofNecturus.Pfluegers Arch. 381:231–239

    Google Scholar 

  2. Biagi, B.A., Sohtell, M. 1986. pH sensitivity of the basolateral membrane of the rabbit proximal tubule.Am. J. Physiol. 250:F261-F266

    PubMed  Google Scholar 

  3. Biagi, B.A., Sohtell, M. 1986. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule.Am. J. Physiol. 250:F267-F272

    PubMed  Google Scholar 

  4. Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Basolateral HCO3 transport.J. Gen. Physiol. 81:53–94

    PubMed  Google Scholar 

  5. Brazy, C.P., Dennis, V.W. 1978. Characteristics of glucosephlorizin interactions in isolated proximal tubules.Am. J. Physiol. 234:F279-F286

    PubMed  Google Scholar 

  6. Grassl, S.M., Aronson, P.S. 1986. Na+/HCO3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex.J. Biol. Chem. 261:8778–8783

    PubMed  Google Scholar 

  7. Guggino, W.B., Boulpaep, E.L., Giebisch, G. 1982. Electrical properties of chloride transport across theNecturus proximal tubule.J. Membrane Biol. 65:185–196

    Google Scholar 

  8. Guggino, W.B., London, R., Boulpaep, E.L., Giebisch, G. 1983. Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: Dependence on bicarbonate and sodium.J. Membrane Biol. 71:227–240

    Google Scholar 

  9. Horsburgh, T., Cannon, J.K., Pitts, R.F. 1978. Action of phlorizin on luminal and antiluminal membranes of proximal cells of kidney.Am. J. Physiol. 234:F485-F489

    PubMed  Google Scholar 

  10. Jentsch, T.J., Matthes, H., Keller, S.K., Wiederholt, M. 1986. Electrical properties of sodium bicarbonate symport in kidney epithelial cells (BSC-1).Am. J. Physiol. 251:F954-F968

    PubMed  Google Scholar 

  11. Kawahara, K. 1985. Ba2+-sensitive potassium permeability of the apical membrane in newt kidney proximal tubule.J. Membrane Biol. 88:283–292

    Google Scholar 

  12. Kubota, T., Biagi, B.A., Giebisch, G. 1983. Effects of acid-base disturbances on the basolateral membrane potential and intracellular potassium activity in the proximal tubule ofNecturus.J. Membrane Biol. 73:61–68

    Google Scholar 

  13. Lang, F., Messner, G., Rehwald, W. 1986. Electrophysiology of sodium-coupled transport in proximal renal tubules.Am. J. Physiol. 250:F853-F962

    Google Scholar 

  14. Lang F., Oberleithner, H., Giebisch, G. 1986. Electrophysiological heterogeneity of proximal convoluted tubules inAmphiuma kidney.Am. J. Physiol. 251:F1063-F1072

    PubMed  Google Scholar 

  15. Matsumura, Y., Cohen, B., Guggino, W.B., Giebisch, G. 1984. Electrical effects of potassium and bicarbonate on proximal tubule cells ofNecturus.J. Membrane Biol. 79:145–152

    Google Scholar 

  16. Matsumura, Y., Cohen, B., Guggingo, W.G., Giebisch, G. 1984. Regulation of the basolateral potassium conductance of theNecturus proximal tubule.J. Membrane Biol. 79:153–161

    Google Scholar 

  17. Messner, G., Oberleithner, H., Lang, F. 1985. The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney.Pfluegers Arch. 404:138–144

    Google Scholar 

  18. Messner, G., Wang, W., Paulmichl, M., Oberleithner, H., Lang, F. 1985. Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney.Pfluegers Arch. 404:131–137

    Google Scholar 

  19. Oberleithner, H., Gassner, B., Dietl, P., Wang, W. 1986. Amphibian nephron: Isolated kidney and cell fusion.Methods Enzymol. (in press)

  20. Oberleithner, H., Schmidt, B., Dietl, P. 1986. Fusion of renal epithelial cells: A model for studying cellular mechanisms of ion transport.Proc. Natl. Acad. Sci. USA 83:3547–3591

    PubMed  Google Scholar 

  21. Planelles, G., Teulon, J., Anagnostopoulos, T. 1981. The effects of barium on the electrical properties of the basolateral membrane in proximal tubule.Naunyn-Schmiedeberg's Arch. Pharmacol. 318:135–141

    Google Scholar 

  22. Sackin, H., Boulpaep, E.L. 1981. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rheogenic transport.Am. J. Physiol. 241:F540-F555

    PubMed  Google Scholar 

  23. Sakhrani, L.M., Badie-Dezfooly, B., Trizna, W., Mikhail, N., Lowe, A.G., Taub, M., Fine, L.G. 1984. Transport and metabolism of glucose by renal proximal tubular cells in primary culture.Am. J. Physiol. 246:F757-F764

    PubMed  Google Scholar 

  24. Wang, W., Dietl, P., Oberleithner, H. 1987. Evidence for Na+ dependent rheogenic HCO 3 transport in fused cells of frog distal tubules.Pfluegers Arch. 408:291–299

    Google Scholar 

  25. Westerwoudt, R.J. 1985. Improved fusion methods. IV. Technical aspects.J. Immunol. Meth. 77:181–196

    Google Scholar 

  26. Wojcieszyn, J.W., Schlegel, R.A., Lumley-Sapansky, K., Jacobson, K.A. 1983. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes.J. Cell Biol. 96:151–159

    PubMed  Google Scholar 

  27. Yoshitomi, K., Burckhardt, B.C., Frömter, E. 1985. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule.Pfluegers Arch. 405:360–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietl, P., Wang, W. & Oberleithner, H. Fused cells of frog proximal tubule: I. Basic membrane properties. J. Membrain Biol. 100, 43–51 (1987). https://doi.org/10.1007/BF02209139

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02209139

Key Words

Navigation