Skip to main content
Log in

Mechanism of sugar transport through the sugar-specific LamB channel ofEscherichia coli outer membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Lipid bilayer experiments were performed with the sugar-specific LamB (maltoporin) channel ofEscherichia coli outer membrane. Single-channel analysis of the conductance steps caused by LamB showed that there was a linear relationship between the salt concentration in the aqueous phase and the channel conductance, indicating only small or no binding between the ions and the channel interior. The total or the partial blockage of the ion movement through the LamB channel was not dependent on the ion concentration in the aqueous phase. Both results allowed the investigation of the sugar binding in more detail, and the stability constants of the binding of a large variety of sugars to the binding site inside the channel were calculated from titration experiments of the membrane conductance with the sugars. The channel was highly cation selective, both in the presence and absence of sugars, which may be explained by the existence of carbonyl groups inside the channel. These carbonyl groups may also be involved in the sugar binding via hydrogen bonds. The kinetics of the sugar transport through the LamB channel were estimated relative to maltose by assuming a simple one-site, two-barrier model from the relative rates of permeation taken from M. Luckey and H. Nikaido (Proc. Natl. Acad. Sci. USA 77:165–171 (1980a)) and the stability constants for the sugar binding given in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz, R. 1985. Porins from bacterial and mitochondrial outer membranes.CRC Crit. Rev. Biochem. 19:145–190

    PubMed  Google Scholar 

  • Benz, R., Hancock, R.E.W. 1981. Properties of the large ion-permeable pores formed from protein F ofPseudomonas aeruginosa in lipid bilayer membranes.Biochim. Biophys. Acta 646:298–308

    PubMed  Google Scholar 

  • Benz, R., Hancock, R.E.W. 1987. Mechanism of ion transport through the anion-selective channel ofPseudomonas aeruginosa outer membrane.J. Gen. Physiol. 89:275–295

    PubMed  Google Scholar 

  • Benz, R., Janko, K., Boos, W., Läuger, P. 1978. Formation of large, ion-permeable membrane channels by the matrix protein (porin) ofEscherichia coli.Biochim. Biophys. Acta 511:305–319

    PubMed  Google Scholar 

  • Benz, R., Janko, K., Läuger, P. 1979. Ionic selectivity of pores formed by the matrix protein (porin) ofEscherichia coli.Biochim. Biophys. Acta 551:238–247

    PubMed  Google Scholar 

  • Benz, R., Ludwig, O., De Pinto, V., Palmieri, F. 1985a. Permeability properties of mitochondrial porins of different eukaryotic cells.In: Achievements and Perspectives of Mitochondrial Research. E. Quagliaello et al., editors. Vol. 1, pp. 317–327, Elsevier, Amsterdam.

    Google Scholar 

  • Benz, R., Schmid, A., Hancock, R.E.W. 1985b. Ion selectivity of gram-negative bacterial porins.J. Bacteriol. 162:722–727

    PubMed  Google Scholar 

  • Benz, R., Schmid, A., Nakae, T., Vos-Scheperkeuter, G. H. 1986. Pore formation by LamB ofEscherichia coli in lipid bilayer membranes.J. Bacteriol. 165:978–986

    PubMed  Google Scholar 

  • Benz, R., Tokunaga, H., Nakae, T. 1984. Properties of chemically modified porin fromEscherichia coli in lipid bilayer membranes.Biochim. Biophys. Acta 769:348–356

    PubMed  Google Scholar 

  • Crane, R.K. 1960. Intestinal absorption of sugars.Physiol. Rev. 40:789–825

    PubMed  Google Scholar 

  • Eisenman, G. 1965. Some elementary factors involved in specific ion permeation. Proceedings of the XXIIIrd International Congress of Physiological Sciences (Tokyo).87:489–506

    Google Scholar 

  • Ferenci, T., Lee, K.-S. 1982. Directed evolution of the lambda receptor ofEscherichia coli through affinity chromatographic selection.J. Mol. Biol. 160:431–444

    PubMed  Google Scholar 

  • Ferenci, T., Schwentorat, M., Ullrich, S., Vilmart, J. 1980. Lambda receptor in the outer membrane ofEscherichia coli as a binding protein for maltodextrins and starch polysaccharides.J. Bacteriol. 142:521–526

    PubMed  Google Scholar 

  • Finkelstein, A., Anderson, O.S. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport.J. Membrane Biol. 59:155–171

    Google Scholar 

  • Hancock, R.E.W. 1987. Role of porins in outer membrane permeability.J. Bacteriol. 169:929–933

    PubMed  Google Scholar 

  • Hancock, R.E.W., Poole, K., Benz, R. 1982. Outer membrane protein P ofPseudomonas aeruginosa: Regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes.J. Bacteriol. 150:730–738

    PubMed  Google Scholar 

  • Heine, H.-G., Kyngdon, J., Ferenci, T. 1987. Sequence determinants in the LamB gene ofEscherichia coli influencing the binding and pore selectivity of maltoporin.Gene 53:287–292

    PubMed  Google Scholar 

  • Kimmich, G.A. 1973. Coupling between Na+ and sugar transport in small intestine.Biochim. Biophys. Acta 300:31–78

    PubMed  Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate-theory analysis.Biochim. Biophys. Acta 311:423–441

    PubMed  Google Scholar 

  • Lieb, W.R., Stein, W.D. 1974. Testing and characterizing the simple pore.Biochim. Biophys. Acta 373:165–177

    PubMed  Google Scholar 

  • Luckey, M., Nikaido, H. 1980a. Specificity of diffusion channels produced by λ-phase receptor protein ofEscherichia coli.Proc. Natl. Acad. Sci. USA 77:165–171

    Google Scholar 

  • Luckey, M., Nikaido, H. 1980b. Diffusion of solutes through channels produced by phage lambda receptor protein ofEscherichia coli: Inhibition of glucose transport by higher oligosaccharides of maltose series.Biochem. Biophys. Res. Commun. 93:166–171

    PubMed  Google Scholar 

  • Maier, C., Bremer, E., Schmid, A., Benz, R. 1987. Pore-forming activity of the Tsx protein from the outer membrane ofEscherichia coli. Demonstration of a nucleoside-specific binding site.J. Biol. Chem. (in press)

  • Meyenburg, K. von, Nikaido, H. 1977. Outer membrane of gram-negative bacteria: XVII. Specificity of transport process catalyzed by the λ-receptor protein inEscherichia coli.Biochem. Biophys. Res. Commun. 78:1100–1107

    PubMed  Google Scholar 

  • Nakae, T. 1976. Identification of the major outer membrane protein ofEscherichia coli that produces transmembrane channels in reconstituted vesicle membranes.Biochem. Biophys. Res. Commun. 71:877–884

    PubMed  Google Scholar 

  • Nakae, T., Ishii, J., Ferenci, T. 1986. The role of maltodextrin binding site in determining the transport properties of maltoporin.J. Biol. Chem. 261:622–626

    PubMed  Google Scholar 

  • Nikaido, H., Rosenberg, E.Y. 1983. Porin channels inEscherichia coli: Studies with liposomes reconstituted from purified proteins.J. Bacteriol. 153:241–252

    PubMed  Google Scholar 

  • Nikaido, H., Vaara, M. 1985. Molecular basis of bacterial outer membrane permeability.Microbiol. Rev. 49:1–32

    PubMed  Google Scholar 

  • Okada, Y., Tsuchiya, W., Irimajiri, A., Inouye, A. 1977. Electrical properties and active solute transport in rat small intestine: I. Potential profile changes associated with sugar and amino acid transport.J. Membrane Biol. 31:205–219

    Google Scholar 

  • Palva, E.T. 1978. Major outer membrane protein inSalmonella typhimvorium induced by maltose.J. Bacteriol. 136:286–294

    PubMed  Google Scholar 

  • Smelcman, S., Hofnung, M. 1975. Maltose transport inEscherichia coli K-12: Involvement of the bacteriophage lambda receptor.J. Bacteriol. 124:112–118

    PubMed  Google Scholar 

  • Vos-Scheperkeuter, G.H., Hofnung, M., Witholt, B. 1984. High-sensitivity detection of newly induced LamB protein on theEscherichia coli cell surface.J. Bacteriol. 159:435–439

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benz, R., Schmid, A. & Vos-Scheperkeuter, G.H. Mechanism of sugar transport through the sugar-specific LamB channel ofEscherichia coli outer membrane. J. Membrain Biol. 100, 21–29 (1987). https://doi.org/10.1007/BF02209137

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02209137

Key Words

Navigation