Skip to main content

Lactose Permease: From Membrane to Molecule to Mechanism

  • Living reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 189 Accesses

Abstract

Lactose permease of Escherichia coli (LacY), a galactoside/H+ symporter, is a paradigm for cation-coupled membrane-transport proteins. This integral membrane protein is composed of two pseudo-symmetrical six-helix bundles surrounding an internal hydrophilic cavity with binding sites for sugar and H+ at the apex of the molecule in the approximate middle of the membrane. These structural features allow LacY to utilize an alternating-access mechanism to catalyze sugar/H+ symport in either direction across the cytoplasmic membrane. The H+-binding site is occupied under most physiological conditions because of a markedly perturbed pK a, and galactoside binding causes transition of the ternary complex to an occluded intermediate that then opens to alternative sides of the membrane. Binding and alternating access of the binding sites to either side of the membrane occur independently of the electrochemical H+ gradient (\( \Delta {\overset{\sim }{\mu}}_{{\mathrm{H}}^{+}}\Big).\, \)However, in the absence of \( \Delta {\overset{\sim }{\mu}}_{{\mathrm{H}}^{+}},\, \)deprotonation is rate limiting, while in the presence of \( \Delta {\overset{\sim }{\mu}}_{{\mathrm{H}}^{+}} \) (interior negative and/or alkaline), deprotonation is no longer rate limiting because there is a driving force on the H+. Although the dissociation constant (K d) value for galactoside remains constant on either side of the membrane, K m decreases 50- to 100-fold, and by this means accumulation against a sugar concentration gradient is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  • Büchel DE, Gronenborn B, Müller-Hill B (1980) Sequence of the lactose permease gene. Nature 283:541–545

    Article  PubMed  Google Scholar 

  • Carrasco N, Antes LM, Poonian MS, Kaback HR (1986) Lac permease of Escherichia coli: histidine-322 and glutamic acid-325 may be components of a charge-relay system. Biochemistry 25:4486–4488

    Article  CAS  PubMed  Google Scholar 

  • Chaptal V, Kwon S, Sawaya MR, Guan L, Kaback HR, Abramson J (2011) Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. Proc Natl Acad Sci USA 108:9361–9366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frillingos S, Sahin-Toth M, Wu J, Kaback HR (1998) Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 12:1281–1299

    Article  CAS  PubMed  Google Scholar 

  • Gaiko O, Bazzone A, Fendler K, Kaback HR (2013) Electrophysiological characterization of uncoupled mutants of LacY. Biochemistry 52:8261–8266

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Celma JJ, Smirnova IN, Kaback HR, Fendler K (2009) Electrophysiological characterization of LacY. Proc Natl Acad Sci USA 106:7373–7378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Celma JJ, Ploch J, Smirnova I, Kaback HR, Fendler K (2010) Delineating electrogenic reactions during lactose/H+ symport. Biochemistry 49:6115–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grytsyk N, Sugihara J, Kaback HR, Hellwig P (2017) pKa of Glu325 in LacY. Proc Natl Acad Sci USA 114:1530–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Kaback HR (2004) Binding affinity of lactose permease is not altered by the H+ electrochemical gradient. Proc Natl Acad Sci USA 101:12148–12152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Kaback HR (2006) Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35:67–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Hu Y, Kaback HR (2003a) Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 42:1377–1382

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Sahin-Toth M, Kalai T, Hideg K, Kaback HR (2003b) Probing the mechanism of a membrane transport protein with affinity inactivators. J Biol Chem 278:10641–10648

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Mirza O, Verner G, Iwata S, Kaback HR (2007) Structural determination of wild-type lactose permease. Proc Natl Acad Sci USA 104:15294–15298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaback HR (2015) A chemiosmotic mechanism of symport. Proc Natl Acad Sci USA 112:1259–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaback HR, Sahin-Toth M, Weinglass AB (2001) The kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2:610–620

    Article  CAS  PubMed  Google Scholar 

  • Kaczorowski GJ, Kaback HR (1979) Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Biochemistry 18:3691–3697

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, Stroud RM (2014) Structure of sugar-bound LacY. Proc Natl Acad Sci USA 111:1784–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H, Finer-Moore JS, Kaback HR, Stroud RM (2015) Structure of LacY with an alpha-substituted galactoside: connecting the binding site to the protonation site. Proc Natl Acad Sci USA 112:9004–9009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Kaback HR (2010) Sugar binding induces the same global conformational change in purified LacY as in the native bacterial membrane. Proc Natl Acad Sci USA 107:9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radestock S, Forrest LR (2011) The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol 407:698–715

    Article  CAS  PubMed  Google Scholar 

  • Robertson DE, Kaczorowski GJ, Garcia ML, Kaback HR (1980) Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry 19:5692–5702

    Article  CAS  PubMed  Google Scholar 

  • Sahin-Toth M, Akhoon KM, Runner J, Kaback HR (2000) Ligand recognition by the lactose permease of Escherichia coli: specificity and affinity are defined by distinct structural elements of galactopyranosides. Biochemistry 39:5097–5103

    Article  CAS  PubMed  Google Scholar 

  • Sahin-Toth M, Lawrence MC, Nishio T, Kaback HR (2001) The C-4 hydroxyl group of galactopyranosides is the major determinant for ligand recognition by the lactose permease of Escherichia coli. Biochemistry 40:13015–13019

    Article  CAS  PubMed  Google Scholar 

  • Smirnova IN, Kasho V, Kaback HR (2008) Protonation and sugar binding to LacY. Proc Natl Acad Sci USA 105:8896–8901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova I, Kasho V, Sugihara J, Choe JY, Kaback HR (2009) Residues in the H(+) translocation site define the pKa for sugar binding to LacY. Biochemistry 48:8852–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova I, Kasho V, Kaback HR (2011) Lactose permease and the alternating access mechanism. Biochemistry 50:9684–9693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova I, Kasho V, Sugihara J, Kaback HR (2013) Trp replacements for tightly interacting Gly-Gly pairs in LacY stabilize an outward-facing conformation. Proc Natl Acad Sci USA 110:8876–8881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Ibar JL, Guan L, Svrakic M, Kaback HR (2003) Exploiting luminescence spectroscopy to elucidate the interaction between sugar and a tryptophan residue in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 100:12706–12711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viitanen P, Garcia ML, Foster DL, Kaczorowski GJ, Kaback HR (1983) Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects. Biochemistry 22:2531–2536

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    Article  Google Scholar 

  • Weinglass AB, Whitelegge JP, Hu Y, Verner GE, Faull KF, Kaback HR (2003) Elucidation of substrate binding interactions in a membrane transport protein by mass spectrometry. EMBO J 22:1467–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousef MS, Guan L (2009) A 3D structure model of the melibiose permease of Escherichia coli represents a distinctive fold for Na(+) symporters. Proc Natl Acad Sci USA 106:15291–15296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guan, L., Kaback, H.R. (2018). Lactose Permease: From Membrane to Molecule to Mechanism. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics