Skip to main content
Log in

Indirect evidence of alteration in the expression of the rDNA genes in interspecific hybrids betweenDrosophila melanogaster andDrosophila simulans

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Crosses betweenDrosophila melanogaster females andD. simulans males produce viable hybrid females, while males are lethal. These males are rescued if they carry theD. simulans Lhr gene. This paper reports that females of the wild-typeD. melanogaster population Staket do not produce viable hybrid males when crossed withD. simulans Lhr males, a phenomenon which we designate as the Staket phenotype. The agent responsible for this phenomenon was found to be the StaketX chromosome (X mel,Stk). Analysis of the Staket phenotype showed that it is suppressed by extra copies ofD. melanogaster rDNA genes and that theX mel,Stk chromosome manifests a weak bobbed phenotype inD. melanogaster X mel,Stk/0 males. The numbers of functional rDNA genes inX mel,Stk andX mel,y w (control) chromosomes were found not to differ significantly. Thus a reduction in rDNA gene number cannot account for the weak bobbedX mel,Stk phenotype let alone the Staket phenotype. The rRNA precursor molecules transcribed from theX mel,Stk rDNA genes seem to be correctly processed in both intraspecific (melanogaster) and interspecific (melanogaster-simulans) conditions. It is therefore suggested that theX mel,Stk rDNA genes are inefficiently transcribed in themelanogaster-simulans hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckingham K (1982) Insect rDNA. In: Busch H, Rothblum L (eds), The cell nucleus vol 10, part A. Academic Press, New York, pp 205–269

    Google Scholar 

  • Breen TR, Lucchesi JC (1986) Analysis of the dosage compensation of a specific transcript inDrosophila melanogaster. Genetics 112:483–491

    PubMed  Google Scholar 

  • Campuzano S, Balcells LL, Villares R, Carramolino L, García-Alonso L, Modolell J (1986) Excess-functionHairy-wing mutations caused by gypsy and copia insertions within structural genes of theachaete-scute locus ofDrosophila. Cell 44:303–312

    PubMed  Google Scholar 

  • Coen ES, Dover GA (1982) Multiple PolI initiation sequences in rDNA spacers ofDrosophila melanogaster. Nucleic Acids Res 10:7017–7026

    PubMed  Google Scholar 

  • Coen ES, Dover GA (1983) Unequal exchange and the coevolution of X and Y rDNA arrays inDrosophila melanogaster. Cell 33:849–855

    PubMed  Google Scholar 

  • Dover GA, Flavell RB (1984) Molecular coevolution: DNA divergence and the maintenance of function. Cell 38:622–623

    PubMed  Google Scholar 

  • Durica DS, Krider HM (1977) Studies on the ribosomal RNA cistrons in interspecificDrosophila hybrids. Dev Biol 59:62–74

    PubMed  Google Scholar 

  • Glover DM, Hogness DS (1977) A novel arrangement of the 18S and 28S sequences in a repeating unit ofDrosophila melanogaster rDNA. Cell 10:167–176

    PubMed  Google Scholar 

  • Goodrich-Young C, Krider HM (1989) Nucleolar dominance and replication dominance inDrosophila interspecific hybrids. Genetics 123:349–358

    PubMed  Google Scholar 

  • Granadino B, Campuzano S, Sánchez L (1990) TheDrosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. EMBO 19:2597–2602

    Google Scholar 

  • Grummt I, Roth E, Paule MR (1982) Ribosomal RNA transcription in vitro is species specific. Nature 296:173–176

    PubMed  Google Scholar 

  • Hayward DC, Glover DM (1989) The promoters and spacers in the rDNAs of themelanogaster species subgroup ofDrosophila. Gene 77:271–285

    PubMed  Google Scholar 

  • Jordan BR (1974) “2S” RNA, a new ribosomal RNA component in culturedDrosophila cells. FEBS Lett 44:39–42

    PubMed  Google Scholar 

  • Jordan BR (1975) Demonstration of intact 26S ribosomal RNA molecules inDrosophila cells. J Mol Biol 98:277–280

    PubMed  Google Scholar 

  • Jordan BR, Glover DM (1977) 5.8S and 2S rDNA is located in the “transcribed spacer” region between the 18S and 26S rRNA genes inDrosophila melanogaster. FEBS Lett 78:271–274

    PubMed  Google Scholar 

  • Jordan BR, Jourdan R, Jacq B (1976) Late steps in the maturation ofDrosophila 26S ribosomal RNA: generation of 5.8S and 2S RNAs by cleavage occurring in the cytoplasm. J Mol Biol 101:85–105

    PubMed  Google Scholar 

  • Kay MA, Jacobs-Lorena M (1987) Developmental analysis of ribosome synthesis inDrosophila. Trends Genet 3:347–351

    Google Scholar 

  • Kidd SM, Glover DM (1981)Drosophila melanogaster ribosomal DNA containing type II insertions is variably transcribed in different strains and tissues. J Mol Biol 151:645–662

    PubMed  Google Scholar 

  • Lohe AR, Roberts PA (1990) An unusual Y chromosome ofDrosophila simulans amplified rDNA spacer without rRNA genes. Genetics 125:399–406

    PubMed  Google Scholar 

  • Lindsley DL, Zimm G (1992) The genome ofDrosophila melanogaster. Academic Press, San Diego

    Google Scholar 

  • Long EO, Dawid IB (1979) Expression of ribosomal DNA insertions inDrosophila melanogaster. Cell 18:1185–1196

    PubMed  Google Scholar 

  • Long EO, Rebbert ML, Dawid IB (1981) Nucleotide sequence of the initiation site for ribosomal DNA transcription inDrosophila melanogaster: comparison of genes with and without insertions. Proc Natl Acad Sci USA 78:1513–1517

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Meyerowitz EM, Hogness DS (1982) Molecular organization of aDrosophila puff site that responds to ecdysone. Cell 28:165–176

    PubMed  Google Scholar 

  • Miesfeld R, Arnheim N (1984) Species-specific rDNA transcription is due to promoter-specific binding factors. Mol Cell Biol 4:221–227

    PubMed  Google Scholar 

  • Miller JR, Hayward DC, Glover DM (1983) Transcription of the “non-transcribed” spacer ofDrosophila melanogaster rDNA. Nucleic Acids Res 11:11–19

    PubMed  Google Scholar 

  • Mishima Y, Financsek I, Kominami R, Muramatsu M (1982) Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal RNA genes: identification of a species-dependent initiation factor. Nucleic Acids Res 10:6659–6669

    PubMed  Google Scholar 

  • Reeder RH (1984) Enhancers and ribosomal gene spacers. Cell 38:349–351

    PubMed  Google Scholar 

  • Rieger R, Nicoloff H, Anastassova-Kristeva M (1979) “Nucleolar Dominance” in interspecific hybrids and translocation lines — a review. Biol Zbl 98:385–398

    Google Scholar 

  • Ritossa FM, Spiegelman S (1965) Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region ofDrosophila melanogaster. Proc Natl Acad Sci USA 53:737–745

    PubMed  Google Scholar 

  • Ritossa FM (1976) The bobbed locus. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila, vol 1b. Academic Press, London, pp 801–846

    Google Scholar 

  • Roiha H, Miller JR, Woods LC, Glover DM (1981) Arrangements and rearrangements of sequences flanking the two types of rDNA insertion inD. melanogaster Nature 290:749–753

    PubMed  Google Scholar 

  • Sánchez L, Granadino B, Vicente L (1994) Clonal analysis in hybrids betweenDrosophila melanogaster andDrosophila simulans. Roux's Arch Dev Biol 204:112–117

    Google Scholar 

  • Schäfer U, Schäfer M (1980) Localization of the ribosomal RNA genes inDrosophila melanogaster. Chromosoma 79:287–291

    PubMed  Google Scholar 

  • Simeone A, de Falco A, Macino G, Boncinelli E (1982) Sequence organization of the ribosomal spacer ofDrosophila melanogaster. Nucleic Acids Res 10:8263–8272

    PubMed  Google Scholar 

  • Skinner JA, Ohrlein A, Grummt I (1984) In vitro mutagenesis and transcriptional analysis of a mouse ribosomal promoter element. Proc Natl Acad Sci USA 81:2137–2141

    PubMed  Google Scholar 

  • Sollner-Webb B, Mougey EB (1991) News from the nucleolus: rRNA gene expression. Trends Biochem Sci 16:58–62

    PubMed  Google Scholar 

  • Sturtevant AH (1920) Genetic studies onDrosophila simulans. I. Introduction. Hybrids withDrosophila melanogaster. Genetics 5:488–500

    Google Scholar 

  • Sturtevant AH (1929) The genetics ofDrosophila simulans. Carnegie Inst Wash Publ 399:1–62

    Google Scholar 

  • Tartof KD, Dawid IB (1976) Similarities and differences in the structural organization of X and Y chromosome rDNA genes ofDrosophila. Nature 263:27–30

    PubMed  Google Scholar 

  • Tautz D, Dover GA (1986) Transcription of the tandem array of ribosomal DNA inDrosophila melanogaster does not terminate at any fixed point. EMBO J 5:1267–1273

    Google Scholar 

  • Watanabe TK (1979) A gene that rescues the lethal hybrids betweenDrosophila melanogaster andDrosophila simulans. Jpn J Genet 54:325–331

    Google Scholar 

  • Wellauer PK, Dawid IB (1977) The structural organization of the ribosomal DNA inDrosophila melanogaster. Cell 10:193–212

    PubMed  Google Scholar 

  • Wellauer PK, Dawid IB, Tartof KD (1978) X and Y chromosome ribosomal DNA ofDrosophila: comparison of spacers and insertions. Cell 14:269–278

    PubMed  Google Scholar 

  • White RL, Hogness DS (1977) R-loop mapping of the 18S and 28S sequences in the long and short repeating units ofDrosophila melanogaster rDNA. Cell 10:177–192

    PubMed  Google Scholar 

  • Yagura T, Yagura M, Muramatsu M (1979)Drosophila melanogaster has different ribosomal RNA sequences on X and Y chromosomes J Mol Biol 133:533–547

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. A. Campos-Ortega

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granadino, B., Penalva, L.O.F. & Sánchez, L. Indirect evidence of alteration in the expression of the rDNA genes in interspecific hybrids betweenDrosophila melanogaster andDrosophila simulans . Molec. Gen. Genet. 250, 89–96 (1996). https://doi.org/10.1007/BF02191828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02191828

Key words

Navigation