Skip to main content
Log in

Relaxation and transport in FCHC lattice gases

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

FCHC lattice gases are the basic models for studying flow problems in three-dimensional systems. This paper presents a self-contained theoretical analysis and some computer simulations of such lattice gases, extended to include an arbitrary number of rest particles, with special emphasis on non-semi-detailed balance (NSDB) models. The special FCHC lattice symmetry guarantees isotropy of the Navier-Stokes equations, and enumerates the 12 spurious conservation laws (staggered momenta). The kinetic theory is based on the mean field approximation or the nonlinear Boltzmann equation. It is shown how calculation of the eigenvalues of the linearized Boltzmann equation offers a simple alternative to the Chapman-Enskog method or the multi-time-scale methods for calculating transport coefficients and relaxation rates. The simulated values for the speed of sound in NSDB models slightly disagree with the Boltzmann prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Dubrulle, U. Frisch, M. Hénon, J. P. Rivet,J. Stat. Phys. 59:1187 (1990).

    Google Scholar 

  2. M. Hénon,J. Stat. Phys. 68:353 (1992).

    Google Scholar 

  3. J. A. Somers and P. C. Rem, inLecture Notes in Physics, Vol. 398, T. M. M. Verheggen, ed. (Springer-Verlag, Berlin, 1992), p. 59.

    Google Scholar 

  4. M. Hénon,Complex Syst. 1:475 (1987).

    Google Scholar 

  5. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet,Complex Syst. 1:649 (1987).

    Google Scholar 

  6. J. F. Olson and D. H. Rothman, inPattern Formation and Lattice-Gas Automata, A. Lawniczak and R. Kapral, eds. (American Mathematical Society, to be published).

  7. C. Appert and S. Zaleski, inPattern Formation and Lattice-Gas Automata, A. Lawniczak and R. Kapral, eds. (American Mathematical Society, to be published).

  8. N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  9. E. C. G. Stueckelberg,Helv. Phys. Acta 25:577 (1952); W. Heitler,Ann. Inst. H. Poincaré 15:67 (1956).

    Google Scholar 

  10. H. J. Bussemaker and M. H. ErnstJ. Stat. Phys. 68:431 (1992).

    Google Scholar 

  11. D. H. Rothman and J. M. Keller,J. Stat. Phys. 52:1119 (1988).

    Google Scholar 

  12. D. H. Rothman,J. Stat. Phys. 56:517 (1989).

    Google Scholar 

  13. C. Appert, D. H. Rothman, and S. Zaleski,Physica D 47:85 (1991).

    Google Scholar 

  14. F. J. Alexander, I. Edrei, P. L. Garrido, and J. L. Lebowitz,J. Stat. Phys. 68:497 (1992).

    Google Scholar 

  15. H. J. Bussemaker and M. H. Ernst,Physica A 194:258 (1993).

    Google Scholar 

  16. M. Gerits, M. H. Ernst, and D. Frenkel,Phys. Rev. E. 48:988 (1993).

    Google Scholar 

  17. M. H. Ernst and J. W. Dufty,J. Stat. Phys. 58:57 (1990).

    Google Scholar 

  18. J. A. Somers and P. C. Rem, inCellular Automata and the Modelling of Complex Systems, P. Manneville, ed. (Springer, 1989), p. 161.

  19. G. Westland, Master's thesis, State University of Utrecht (1991), unpublished.

  20. P. G. Grosfils, J. P. Boon, and P. Lallemand,Phys. Rev. Lett. 68:1077 (1992).

    Google Scholar 

  21. P. G. Grosfils, J. P. Boon, R. Brito, and M. H. Ernst,Phys. Rev. E 48: (1993).

  22. S. P. Das, H. J. Bussemaker, and M. H. Ernst,Phys. Rev. E. 48:245 (1993).

    Google Scholar 

  23. G. Zanetti,Phys. Rev. A 40:1539 (1989).

    Google Scholar 

  24. M. H. Ernst, inLiquids, Freezing and the Glass Transition, Les Houches, Session LI, 1989, D. Levesque, J. P. Hansen, and J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1991), p. 43.

    Google Scholar 

  25. T. Naitoh, M. H. Ernst, and J. W. Dufty,Phys. Rev. A 42:7187 (1990).

    Google Scholar 

  26. M. Hénon, inPattern Formation and Lattice-Gas Automata, A. Lawniczak and R. Kapral, eds. (American Mathematical Society, to be published).

  27. M. A. van der Hoef and D. Frenkel,Phys. Rev. A 41:4277 (1990).

    Google Scholar 

  28. M. A. van der Hoef, M. Dijkstra, and D. Frenkel,Europhys. Lett. 17:39 (1992).

    Google Scholar 

  29. M. Hénon,Complex Syst. 1:763 (1987).

    Google Scholar 

  30. R. Brito and M. H. Ernst,Phys. Rev. A 44:8384 (1991).

    Google Scholar 

  31. P. Resibois and M. de Leener,Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  32. S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  33. T. R. Kirkpatrick and M. H. Ernst,Phys. Rev. A 44:8051 (1991).

    Google Scholar 

  34. S. H. Luo, H. Chen, S. Chen, G. D. Doolen, and Y. C. Lee,Phys. Rev. A 43:7097 (1991).

    Google Scholar 

  35. H. J. Bussemaker and M. H. Ernst, in Cagliari Proceedings Workshop Cagliari, September 1992, S. Succi, ed.,Stat. Phys. Transport Theory (1993).

  36. R. Brito and M. H. Ernst,J. Stat. Phys. 62:283 (1991).

    Google Scholar 

  37. D. van Coevorden, Master's thesis, State University of Utrecht (1992), unpublished.

  38. G. A. van Velzen, R. Brito, and M. H. Ernst,J. Stat. Phys. 70:811 (1993).

    Google Scholar 

  39. R. Brito and M. H. Ernst,J. Phys. A 24:3331 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Coevorden, D.V., Ernst, M.H., Brito, R. et al. Relaxation and transport in FCHC lattice gases. J Stat Phys 74, 1085–1115 (1994). https://doi.org/10.1007/BF02188218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188218

Key Words

Navigation