Skip to main content
Log in

A riemann integral approach to Feynman's path integral

  • Published:
Foundations of Physics Letters

Abstract

It is a well known result that the Feynman's path integral (FPI) approach to quantum mechanics is equivalent to Schrödinger's equation when we use as integration measure the Wiener-Lebesgue measure. This results in little practical applicability due to the great algebraic complexibity involved, and the fact is that almost all applications of (FPI) “practical calculations” — are done using a Riemann measure. In this paper we present an expansion to all orders in time of FPI in a quest for a representation of the latter solely in terms of differentiable trajetories and Riemann measure. We show that this expansion agrees with a similar expansion obtained from Schrödinger's equation only up to first order in a Riemann integral context, although by chance both expansions referred to above agree for the free particle and harmonic oscillator cases. Our results permit, from the mathematical point of view, to estimate the many errors done in “practical” calculations of the FPI appearing in the literature and, from the physical point of view, our results supports the stochastic approach to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Feynman,Rev. Mod. Phys. 20, 367 (1948).

    Google Scholar 

  2. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  3. E. Nelson,J. Math. Phys. 5, 332 (1964).

    Google Scholar 

  4. R. E. L. Monaco, Ph. D. Dissertation, Inst. Física “Gleb Wataghin” UNICAMP, 1992.

  5. L. S. Schulman,Techniques and Applications of Path Integration (Wiley, New York, 1981).

    Google Scholar 

  6. F. E. Wiegel,Introduction to Path-Integrals Methods in Physics and Polimer Sciences (World Scientific, Singapore, 1986).

    Google Scholar 

  7. J. W. Negele and H. Orland,Quantum Many-Particle Systems (Addison-Wesley, Reading, 1988).

    Google Scholar 

  8. S. Lundqvist, A. Ranfagni, V. Sa-yakanit and L. S. Schulman, eds.,Path Integral Method with Applications (Word Scientific, Singapore, 1987).

    Google Scholar 

  9. H. H. Torriani,Adv. in Appl. Math. 8, 345 (1987).

    Google Scholar 

  10. A. K. Kapoor,Phys. Rev. D 30, 1750 (1984).

    Google Scholar 

  11. R. L. Monaco and W. A. Rodrigues, Jr.,Phys Lett. A 179, 235 (1993).

    Google Scholar 

  12. R. L. Monaco and E. Capelas de Oliveira,J. Math. Phys. 35, 637 (1994).

    Google Scholar 

  13. R. P. Feynman, R. B. Leighton, and M. Sands,Quantum Mechanics: The Feymann Lectures on Physics, Vol. 3 (Addison-Wesley, Reading, 1965).

    Google Scholar 

  14. Franco Selleri,Le grand débat de la Théorie quantique (Flammarion France, 1986).

    Google Scholar 

  15. L. de Brolie,C.R. Acad. Sc. (Paris) 183, 447 (1926).

    Google Scholar 

  16. D. Bohm,Phys. Rev. 85, 166 (1952).

    Google Scholar 

  17. R. L. Monaco and G. G. Cabrera,Found. Phys. Lett. 7, 1 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monaco, R.L., Lagos, R.E. & Rodrigues, W.A. A riemann integral approach to Feynman's path integral. Found Phys Lett 8, 365–373 (1995). https://doi.org/10.1007/BF02187816

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02187816

Key words

Navigation