Skip to main content
Log in

Consistent use of paradoxes in deriving constraints on the dynamics of physical systems and of no-go theorems

  • Published:
Foundations of Physics Letters

Abstract

The classical methods used by recursion theory and formal logic to block paradoxes do not work in quantum information theory. since quantum information can exist as a coherent superposition of the classical “yes” and “no” states, certain tasks which are not conceivable in the classical setting can be performed in the quantum setting. Classical logical inconsistencies do not arise, since there exist fixed point states of the diagnonalization operator. In particular, closed timelike curves need not be eliminated in the quantum setting, since they need not lead to the classical antinomies. Quantum information theory can also be subjected to the treatment of inconsistent information in databases and expert systems. It is suggested that any two pieces of contradicting information are stored and processed as coherent superposition. In order to be tractable, this strategy requires quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. K. Svozil, “Quantum recursion theory,” submitted.

  2. K. Svozil, “Halting probability amplitude of quantum computers,”Journal of Universal Computer Science 1, nr. 3, 1–4 (March 1995); “Quantum algorithmic information theory,” e-print quant-ph/95 10005 (URL: http://xxx.lanl.gov/ps/quant-ph/9510005).

    Google Scholar 

  3. R. W. Hamming,Coding and Information Theory, 2nd edn. (Prentice-Hall, Englewood Cliffs, New Jersey, 1980).

    Google Scholar 

  4. D. Z. Albert,Phys. Lett. 94A, 249 (1983).

    Google Scholar 

  5. D. Deutsch,Proc. R. Soc. Lond. A 400, 97 (1985).

    Google Scholar 

  6. R. P. Feynman,Opt. News 11, 11 (1985).

    Google Scholar 

  7. A. Peres,Phys. Rev. A32, 3266 (1985).

    Google Scholar 

  8. P. Benioff,Ann. N.Y. Akad. Sci. 480, 475 (1986).

    Google Scholar 

  9. N. Margolus,Ann. N.Y. Akad. Sci. 480, 487 (1986).

    Google Scholar 

  10. D. Deutsch,Proc. R. Soc. Lond. A425, 73 (1989).

    Google Scholar 

  11. D. Deutsch andR. Jozsa,Proc. R. Soc. Lond. A 439, 553 (1992).

    Google Scholar 

  12. A. Shimony, “Controllable and uncontrollable non-locality”, inProceedings of the International Symposium on the Foundations of Quantum Mechanics, S. Kamefuchiet al., eds. (Physical Society of Japan, Tokyo, 1984), reprinted in A. Shimony,Search for a Naturalistic World View, Volume II (Cambridge University Press, Cambridge, 1993), p. 130.

    Google Scholar 

  13. A. Shimony, “Events and Processes in the Quantum World”, inQuantum Concepts in Space and Time, R. Penrose and C. I. Isham, eds. (Clarendon Press, Oxford, 1986), reprinted in A. Shimony,Search for a Naturalistic World View, Volume II (Cambridge University Press, Cambridge, 1993), p. 140.

    Google Scholar 

  14. TheBible contains a passage, which refers to Epimenides, a Crete living in the capital city of Cnossus: “One of themselves, a prophet of their own, said, ‘Cretans are always liars, evil beasts, lazy gluttons.’” — St. Paul, Epistle to Titus I (12–13). For more details, see A. R. Anderson,St. Paul's Epistle to Titus, inThe Paradox of the Liar, R. L. Martin, ed. (Yale University Press, New Haven, 1970).

  15. K. Gödel,Monatshefte für Mathematik und Physik 38, 173 (1931); English translation in [16] and in Davis, ref. [17].

    Article  Google Scholar 

  16. K. Gödel,Collected Works, Volume I, Publications 1929–1936, S. Feferman, J. W. Dawson Jr., St. C. Kleene, G. H. Moore, R. M. Solovay, and J. van Heijenoort, eds. (Oxford University Press, Oxford, 1986).

    Google Scholar 

  17. M. Davis,The Undecidable (Raven Press, New York, 1965).

    Google Scholar 

  18. The following citation is taken from K. Gödel's reply to a letter by A. W. Burks, reprinted in J. von Neumann'sTheory of Self-Reproducing Automata, A. W. Burks, ed. (University of Illinois Press, Urbana, 1966), p. 55; see also S. Feferman,Philosophia Naturalis 21, 546 (1984), p. 554, “ ... the fact that a complete epistemological description of a languageA cannot be given in the same languageA, because the concept of truth of sentences ofA cannot be defined inA. It is this theorem which is the true reason for the existence of undecidable propositions in the formal systems containing arithmetic.”

  19. K. R. Popper,Brit. J. Phil. Sci. 1, 117, 173 (1950).

    Google Scholar 

  20. Gödel's attitude towards the introduction of the incompleteness theorems into physics seems to have been a negative one [cf. J. A. Wheeler,Private communication and J. Bernstein,Quantum Profiles (Princeton University Press, Princeton, 1991), pp. 140–141].

  21. Hilbert was so angry about this question (possibly raised by Brouwer) that he dedicated a whole paragraph to a polemic in D. Hilbert, “Über das Unendliche,”Math. Ann. 95, 161–190 (1926).

    Article  MathSciNet  Google Scholar 

  22. In a double-slit experiment, the wave function Ψ is actually in a coherent superposition Ψ=ψ(1)+ψ(2) of the amplitude for the particle to go through slit 1 and slit 2.

  23. K. Svozil,Europhys. Lett. 2, 83 (1986);Nuovo Cimento 96B, 127 (1986); and [39], Chap. 6.

    Google Scholar 

  24. O. E. Rössler, inEndophysics, inReal Brains, Artificial Minds, J. L. Casti and A. Karlquist, eds. (North-Holland, New York, 1987), p. 25;

    Google Scholar 

  25. O. E. Rössler, inEndophysics, Die Welt des inneren Beobachters, P. Weibel, ed. (Merwe Verlag, Berlin, 1992).

    Google Scholar 

  26. T. Toffoli, “The role of the observer in uniform systems”, inApplied General Systems Research, G. Klir, ed. (Plenum, New York, 1978).

    Google Scholar 

  27. The observer is situated, in O. E. Rössler's dictum, in a “Cartesian prison”; cf. H. Atmanspacher and G. Dalenoort, eds.,Inside Versus Outside (Springer, Berlin, 1994), p. 156.

    Google Scholar 

  28. J. Rothstein,Internat. J. Theoret. Phys. 21, 327 (1982).

    Article  Google Scholar 

  29. A. Peres,Found. Phys. 15, 201 (1985).

    Article  Google Scholar 

  30. St. Wolfram,Phys. Rev. Lett. 54, 735 (1985);Physica D10, 1 (1984);Rev. Mod. Phys. 55, 601 (1983).

    Article  Google Scholar 

  31. Ch. D. Moore,Phys. Rev. Lett. 64, 2354 (1990).

    Article  Google Scholar 

  32. A. C. Elitzur,Phys. Lett. A167, 335 (1992), as well as S. Popescu and D. Rohrlich,Found. Phys. 24, 379 (1994), refer to a talk of Professor Y. Aharonov delivered at the Einstein centennial.

    Google Scholar 

  33. A. Posiewnik, “On inconsistency of the language of physics,” University of Gdansk preprint, 1993.

  34. K. Gödel,Rev. Mod. Phys. 21, 447 (1949): K. Gödel, “A remark about the relationship between relativity theory and idealistic philosophy”, inAlbert Einstein, Philosopher-Scientist, P. A. Schilpp, ed. (Open Court, Evanston, Ill., 1949), p. 555.

    Article  Google Scholar 

  35. E. Recami,Found. Phys. 17, 239 (1987).

    Article  Google Scholar 

  36. J. S. Bell,Physics 1, 195 (1964);

    Google Scholar 

  37. J. S. Bell,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  38. D. Deutsch,Phys. Rev. D44, 3197 (1991).

    Google Scholar 

  39. H. Rogers,Theory of Recursive Functions and Effective Computability (MacGraw-Hill, New York 1967).

    Google Scholar 

  40. P. Odifreddi,Classical Recursion Theory (North-Holland, Amsterdam, 1989).

    Google Scholar 

  41. K. Svozil,Randomness and Undecidability in Physics (World Scientific, Singapore, 1993).

    Google Scholar 

  42. For more detailed accounts of this paradox, which is sometimes referred to asTolman's paradox, see R. C. Tolman,The Theory of Relativity of Motion (Berkeley, 1917), G. A. Benford, D. L. Book, and W. A. Newcomb,Phys. Rev. D2, 263 (1970).

    Google Scholar 

  43. E. Recami,Tachyons, Monopoles, and Related Topics (North-Holland, Amsterdam, 1978);Riv. Nuovo Cimento 9, 1 (1986);Found. Phys. 17, 239 (1987).

    Google Scholar 

  44. A. Peres and L. S. Schulman,Phys. Res. D5, 2654 (1972).

    Google Scholar 

  45. A. Peres and L. S. Schulman,Internat. J. Theoret. Phys. 6, 377 (1972).

    Article  Google Scholar 

  46. L. L. Gatlin,Internat. J. Theoret. Phys. 19, 25 (1980).

    Article  Google Scholar 

  47. A. Peres,Found. Phys. 16, 573 (1986).

    Article  Google Scholar 

  48. O. M. Bilaniuk, V. K. Deshpande, and E. C. G. Surdashan,Am. J. Phys. 30, 718 (1962).

    Article  Google Scholar 

  49. G. Feinberg,Phys. Rev. 159, 1089 (1967).

    Article  Google Scholar 

  50. J. A. Wheeler and R. P. Feynman,Rev. Mod. Phys. 21, 425 (1949).

    Article  Google Scholar 

  51. E. C. G. Stückelberg,Helv. Phys. Acta 14, 322, 588 (1941).

    Google Scholar 

  52. R. P. Feynman,Quantum Electrodynamics (Benjamin, New York, 1961).

    Google Scholar 

  53. S. W. Hawking,Phys. Rev. D46, 603 (1992).

    Google Scholar 

  54. J. F. Woodward,Found. Phys. Lett. 8, 1 (1995).

    Google Scholar 

  55. In an abstract form, the above argument is the analogon to the fixed point or paradoxical combinator in combinatory logic; cf. H. B. Curry and R. Feys,Combinatory Logic (North-Holland, Amsterdam, 1958), p. 151 and 178, and H. P. Barendregt,The Lambda Calculus (rev. edn.) (North Holland, Amsterdam, 1984).

    Google Scholar 

  56. E. F. Moore,Gedanken Experiments on Sequential Machines, inAutomata Studies, ed. by C. E. Shannon and J. McCarthy (Princeton University Press, Princeton, 1956).

    Google Scholar 

  57. D. Finkelstein and S. R. Finkelstein,Internat. J. Theoret. Phys. 22, 753 (1983).

    Article  Google Scholar 

  58. I. Pitowsky,Phys. Rev. Lett. 48, 1299 (1982);Phys. Rev. D27, 2316 (1983); N. D. Mermin,Phys. Rev. Lett. 49, 1214 (1982); A. L. Macdonald,ibid., 1215 (1982); I. Pitowsky,ibid., 1216 (1982).

    Article  Google Scholar 

  59. I. Pitowsky,Quantum Probability—Quantum Logic (Springer, Berlin, 1989).

    Google Scholar 

  60. K. Svozil,Phys. Lett. 140, 5 (1989).

    Article  Google Scholar 

  61. G. J. Chaitin,Information, Randomness and Incompleteness, Second edition (World Scientific, Singapore, 1987, 1990);Algorithmic Information Theory (Cambridge University Press, Cambridge, 1987);Information-Theoretic Incompleteness (World Scientific, Singapore, 1992).

    Google Scholar 

  62. Note that, unlike in fuzzy logic,\(\left| {\tfrac{1}{{\sqrt 2 }},\left. {\tfrac{1}{{\sqrt 2 }}} \right\rangle } \right.\) is a probabilityamplitude rather than a probability for 0 and 1.

  63. R. P. Feynman,Internat. J. Theoret. Phys. 21, 467 (1982).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svozil, K. Consistent use of paradoxes in deriving constraints on the dynamics of physical systems and of no-go theorems. Found Phys Lett 8, 523–535 (1995). https://doi.org/10.1007/BF02186244

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186244

Key words

Navigation