Advertisement

Journal of Statistical Physics

, Volume 82, Issue 5–6, pp 1371–1384 | Cite as

Rate of escape from nonattracting chaotic sets

  • Yingjie Zhang
Articles
  • 20 Downloads

Abstract

Chaotic transient phenomena occur in the vicinity of nonattracting chaotic sets. The rate of escape measures the average length of the transients. There is a conjecture by Eckmann and Ruelle connecting the rate of escape to the Lyapunov exponents and entropy. We prove an inequality that partially supports the conjecture.

Key Words

Rate of escape chaotic transients Lyapunov exponents entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. T. Alligood and J. A. Yorke, Accessible saddles on fractal basin boundaries,Ergod. Theory Dynam. Syst. 12:377–400 (1992).Google Scholar
  2. 2.
    R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,Inventiones Math. 29:181–202 (1975).Google Scholar
  3. 3.
    F. Christiansen and P. Grassberger, Escape and sensitive dependence on initial conditions in a symplectic repeller,Phys. Lett. A 181:47–53 (1993).Google Scholar
  4. 4.
    R. Devaney and Z. Nitecki, Shift automorphisms in the Hénon mapping,Commun. Math. Phys. 67:137–146 (1979).Google Scholar
  5. 5.
    J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,Rev. Mod. Phys. 57:617–656 (1985).Google Scholar
  6. 6.
    C. Grebogi, E. Ott, and J. A. Yorke, Crises, sudden changes in chaotic attractors and transient chaos,Physica 7D:181–200 (1983).Google Scholar
  7. 7.
    I. M. Jánosi and T. Tél, Time-series analysis of transient chaos,Phys. Rev. E 49:2756–2763 (1994).Google Scholar
  8. 8.
    A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,Publ. Math. IHES 51:137–173 (1980).Google Scholar
  9. 9.
    H. Kantz and P. Grassberger, Repellers, semi-attractors, and long-lived chaotic transients,Physica 17D:75–86 (1985).Google Scholar
  10. 10.
    F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms,Ann. Math. 122:509–574 (1985).Google Scholar
  11. 11.
    S. Newhouse, Entropy and volume,Ergod. Theory Dynam. Syst. 8:283–299 (1988).Google Scholar
  12. 12.
    T. Tél, InDirections in Chaos, B.-L. Hao, ed. (World Scientific, Singapore, 1990), Vol. 3, pp. 149–221.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Yingjie Zhang
    • 1
  1. 1.Department of MathematicsMichigan State UniversityEast Lansing

Personalised recommendations