Skip to main content
Log in

The origins of Onsager's key role in the development of linear irreversible thermodynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Onsager discovered a deep underlying symmetry in the thermodynamic description of irreversible processes for which he was awarded the 1968 Nobel Prize in chemistry. After a brief sketch of irreversible thermodynamics and its history, this paper describes Onsager's path to his discovery. It is primarily based on an interview with Onsager a few months before his death, with some details from Onsager's Nobel address. When asked to rank his work, he placed this work at the top.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, The motion of ions: Principles and concepts,Science 166:1359–1364 (1969).

    Google Scholar 

  2. S. R. DeGroot and P. Mazur,Non-Equilibrium Thermodynamics (Interscience, New York, 1962).

    Google Scholar 

  3. R. Haase,Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, Massachusetts, 1969; reprinted, Dover, New York, 1992).

    Google Scholar 

  4. D. G. Miller, Thermodynamics of irreversible processes: The experimental verification of the Onsager reciprocal relations,Chem. Rev. 60:15–37 (1960).

    Google Scholar 

  5. D. G. Miller, InFoundations of Continuum Thermodynamics, J. J. Delgado Domingos, M. N. R. Nina, and J. H. Whitelaw, eds. (Macmillan, London, 1974), Chapter 10; see also E. A. Mason, InFoundations of Continuum Thermodynamics, J. J. Delgado Domingos, M. N. R. Nina, and J. H. Whitelaw, eds. (Macmillan, London, 1974), Chapter 11.

    Google Scholar 

  6. L. Onsager, Reciprocal relations in irreversible processes. I,Phys. Rev. 37:405–426 (1931).

    Google Scholar 

  7. L. Onsager, Reciprocal relations in irreversible processes. II,Phys. Rev. 38:2265–2279 (1931).

    Google Scholar 

  8. D. G. Miller, InTransport Phenomena in Fluids, H. Hanley, ed. (Marcel Dekker, New York, 1969), Chapter 11.

    Google Scholar 

  9. D. G. Miller, Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficientsl ij for isothermal vector transport processes in binary electrolyte systems,J. Phys. Chem. 70:2639–2659 (1966).

    Google Scholar 

  10. D. G. Miller, Application of irreversible thermodynamics to electrolyte solutions. II. Ionic coefficientsl ij for isothermal vector transport processes in ternary systems,J. Phys. Chem. 71:616–632 (1967).

    Google Scholar 

  11. D. G. Miller, Ionic interactions in transport processes as described by irreversible thermodynamics,Faraday Discuss. Chem. Soc. 64:295–303 (1978); see also discussion, pp. 346–350.

    Google Scholar 

  12. E. C. Zhong and H. L. Friedman, Self-diffusion and distinct diffusion of ions in solution,J. Phys. Chem. 92:1685–1692 (1988).

    Google Scholar 

  13. Rayleigh (J. W. Strutt),Proc. Math. Soc. London 4:357 (1873).

    Google Scholar 

  14. J. Bertrand,Thermodynamique (Gauthier-Villars, Paris, 1887).

    Google Scholar 

  15. P. Duhem,Traité d'Energétique, Vol. 2, (Gauthier-Villars, Paris, 1911), Chapters 12, 15.

    Google Scholar 

  16. L. Natanson,Z. Phys. Chem. 21:193 (1896).

    Google Scholar 

  17. G. Jaumann,Sitzber. Akad. Wiss. Wien. Math.-naturw. Kl. Abt. IIa 120:385 (1911).

    Google Scholar 

  18. E. Lohr,Denksch. Akad. Wiss. Wien. Math.-naturw. Kl. 93:339 (1916).

    Google Scholar 

  19. J. Fourier,Mém Inst. 4:185 (1819–20) [read in 1811].

    Google Scholar 

  20. G. S. Ohm,Die Galvanische Kette, Mathematische Behandelt (Berlin, 1827).

  21. A. Fick,Ann. Phys. (Pogg.) 94:59 (1855).

    Google Scholar 

  22. G. Stokes,Cambridge Dublin Math. J. 6:215 (1851).

    Google Scholar 

  23. W. Thomson (Lord Kelvin),Proc. R. Soc. Edinburgh 3:225 (1854).

    Google Scholar 

  24. H. von Helmholtz,Ann. Phys. (Leipzig)3:201 (1878).

    Google Scholar 

  25. U. Saxèn,Ann. Phys. (Leipzig) 47:46 (1892).

    Google Scholar 

  26. R. Wegscheider,Z. Phys. Chem. 39:257 (1901).

    Google Scholar 

  27. L. Onsager and R. M. Fuoss, Irreversible processes in electrolytes,J. Phys. Chem. 36:2689–2778 (1932).

    Google Scholar 

  28. L. Onsager and S. Machlup, Fluctuations and irreversible processes,Phys. Rev. 91:1505–1512 (1953).

    Google Scholar 

  29. L. Onsager and S. Machlup, Fluctuations and irreversible processes. II. Systems with kinetic energy,Phys. Rev. 91:1512–1515 (1953).

    Google Scholar 

  30. L. Onsager and S. K. Kim, The relaxation effect in mixed strong electrolytes,J. Phys. Chem. 61:215–219 (1957).

    Google Scholar 

  31. L. Onsager and S. K. Kim, The integral representation of the relaxation effects in mixed strong electrolytes in the limiting law region,J. Phys. Chem. 81:1211–1212 (1977).

    Google Scholar 

  32. J. Meixner, Thermodynamische und kinetische Behandlung der thermoelektrischen Effekte in Magnetfeld,Ann. Phys. (Leipzig)35:701–734 (1939).

    Google Scholar 

  33. J. Meixner, Zur Thermodynamik der Thermodiffusion,Ann. Phys. (Leipzig)39:333–356 (1941).

    Google Scholar 

  34. J. Meixner, Zur theorie der electrischen Transporterscheinungen im Magnetfeld,Ann. Phys. (Leipzig)40:165–180 (1941).

    Google Scholar 

  35. J. Meixner, Reversible Bewegungen von Flüssigkeiten und Gasen,Ann. Phys. (Leipzig) 41:409–425 (1942).

    Google Scholar 

  36. J. Meixner, Zur Thermodynamik der irreversiblen Prozesse in Gases mit chemisch reagierenden, dissoziierenden und anregbaren Komponenten,Ann. Phys. (Leipzig)43:244–270 (1943).

    Google Scholar 

  37. J. Meixner, Zur Thermodynamik der irreversiblen Prozesse,Z. Phys. Chem. B 53:235–263 (1943).

    Google Scholar 

  38. S. R. DeGroot,L'Effet Soret (North-Holland, Amsterdam, 1945).

    Google Scholar 

  39. I. Prigogine,Etude Thermodynamique des Processus Irréversibles (Desoer, Liège, 1947).

    Google Scholar 

  40. J. Meixner and H. G. Reik,Thermodynamik der Irreversiblen Prozesse, InHandbuch der Physik, Vol. III/2, S. Flügge, ed. (Springer-Verlag, Berlin, 1959), pp. 413–523.

    Google Scholar 

  41. R. Haase,Thermodynamik der Irreversiblen Prozesse (Dietrich Steinkopff, Darmstadt, 1963).

    Google Scholar 

  42. J. S. Kirkaldy, D. Weichert, and Zia-Ul-Haq, Diffusion in multicomponent metallic systems. VI. Some thermodynamic properties of theD matrix and the corresponding solutions of the diffusion equations,Can. J. Phys. 41:2166–2173 (1963).

    Google Scholar 

  43. H. L. Toor, Solutions of the linearized equations of multicomponent mass transfer: I, II,Am. Inst. Chem. Eng. J. 10:448–455, 460–465 (1964).

    Google Scholar 

  44. H. T. Cullinan, Analysis of the flux equations of multicomponent diffusion,Ind. Eng. Chem. Fundam. 4:133–139 (1965).

    Google Scholar 

  45. W. E. Stewart and R. Prober, Matrix calculation of multicomponent mass transfer in isothermal systems,Ind. Eng. Chem. Fundam. 3:224–235 (1964).

    Google Scholar 

  46. D. G. Miller, V. Vitagliano, and R. Sartorio, Some comments on multicomponent diffusion: Negative main term diffusion coefficients, second law constraints, solvent choices, and reference frame transformations,J. Phys. Chem. 90:1509–1519 (1986).

    Google Scholar 

  47. D. G. Miller, J. A. Rard, L. B. Eppstein, and J. G. Albright, Mutual diffusion coefficients and ionic transport coefficientsl ij of MgCl2 at 25°C,J. Phys. Chem. 88:5739–5748 (1984).

    Google Scholar 

  48. D. G. Miller and J. A. Rard, Generalized isothermal transport coefficients of ZnCl2−H2O at 25°C,J. Mol. Liquids 52:145–179 (1992).

    Google Scholar 

  49. C. Truesdell,Rational Thermodynamics (McGraw-Hill, New York, 1969); 2nd ed. (Springer-Verlag, New York, 1984).

    Google Scholar 

  50. P. W. Debye and E. Hückel, Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen,Phys. Z. 24:185–206 (1923).

    Google Scholar 

  51. P. W. Debye and E. Hückel, Zur Theorie der Elektrolyte. II. Das Grenzgesetz für die elektrische Leitfähigkeit,Phys. Z. 24:305–325 (1923).

    Google Scholar 

  52. L. Onsager, Zur Theorie der Elektrolyte. I,Phys. Z. 27:388–392 (1926).

    Google Scholar 

  53. L. Onsager, Zur Theorie der Elektrolyte. II,Phys. Z. 28:277–298 (1927).

    Google Scholar 

  54. W. Nernst,Z. Phys. Chem. 2:613 (1888).

    Google Scholar 

  55. C. N. Riiber, Über Mutarotation I. Mitteilung,Chem. Ber. 55B:3132–3143 (1922).

    Google Scholar 

  56. C. N. Riiber, Über Mutarotation II. Mitteilung,Chem. Ber. 56B:2185–2194 (1923).

    Google Scholar 

  57. L. Onsager, Simultane irreversible processor (abstract),Beret. 18d. Skand. Natforsk-Moede (Copenhagen)1929:440–441.

  58. W. H. Furry, R. C. Jones, and L. Onsager, On the theory of isotope separation by thermal diffusion,Phys. Rev. 55:1083–1095 (1939).

    Google Scholar 

  59. L. Onsager, Theories and problems of liquid diffusion,Ann. N. Y. Acad. Sci. 46:241–265 (1945).

    Google Scholar 

  60. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition,Phys. Rev. 65:117–149 (1944).

    Google Scholar 

  61. L. Onsager and B. Kaufman, Crystal statistics. III. Short-range order in a binary Ising lattice,Phys. Rev. 76:1244–1252 (1949).

    Google Scholar 

  62. L. Onsager, Statistical hydrodynamics,Nuovo Cimento (9) 6:279–287 (1949); also pp. 249, 261.

    Google Scholar 

  63. L. Onsager, Interpretation of the de Haas-van Alphen Effect,Phil. Mag. (7) 43:1006–1008 (1952).

    Google Scholar 

  64. L. Onsager, Electric moments of molecules in liquids,J. Am. Chem. Soc. 56:1486–1493 (1936).

    Google Scholar 

  65. C. Longuet-Higgins and M. Fisher, Lars Onsager,Biographical Memoirs (NAS) 60:182–232 (1991).

    Google Scholar 

  66. L. Onsager, Deviations from Ohm's law in weak electrolytes,J. Chem. Phys. 2:599–615 (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.G. The origins of Onsager's key role in the development of linear irreversible thermodynamics. J Stat Phys 78, 563–573 (1995). https://doi.org/10.1007/BF02183365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183365

Key Words

Navigation