Skip to main content
Log in

Second-derivative Fourier transform infrared spectra of seaweed galactans

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The Fourier transform infrared spectra of agar, agarose, κ-, ι-, and λ-carrageenan, and ofChondrus canaliculatus, Iridaea ciliata, I. membranacea, I. laminarioides andGracilaria chilensis polysaccharides were recorded in the 4000–400 cm-1 region. The bands in the second derivative mode are sharper and more bands are resolved than in the normal spectra.

Agar, agarose andG. chilensis phycocolloids exhibit diagnostic bands at ≈790 and ≈713 cm-1. κ-, ι- and λ-carrageenans, and native carrageenan-type polysaccharides fromC. canaliculatus andIridaea species exhibit bands at around 1160, 1140, 1100, 1070, 1040, 1008, 610, and 580 cm-1. Therefore, FT-IR spectroscopy in the second-derivative mode may be applied to differentiate between agar- and carrageenan-types seaweed galactans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson WS, Dolan TCS, Penman A, Rees DA, Muller GP, Stancioff DF, Stanley NF (1968) Carrageenans IV. Variation in the structure and gel properties of κ-carrageenan and the characterization of sulfate esters by infrared spectroscopy. J. Chem. Soc. C: 602–606.

    Google Scholar 

  • Ayal HA, Matsuhiro B (1986) Carrageenan from tetrasporic and cystocarpicChondrus canaliculatus. Phytochemistry 25: 1895–1897.

    Google Scholar 

  • Ayal HA, Matsuhiro B (1987) Polysaccharides from nuclear phases ofIridaea ciliata andI. membranacea. In: Ragan MA, Bird CJ (eds), Twelfth International Seaweed Symposium. Developments in Hydrobiology 41. Dr W. Junk Publishers, Dordrecht, 531–534. Reprinted from Hydrobiologia 151/152.

    Google Scholar 

  • Ayal HA, Matsuhiro B (1988) Irideans from cystocarpic and tetrasporophyticIridaea laminarioides (Rhodophyta, Gigartinaceae). Gayana Bot. 45: 91–94.

    Google Scholar 

  • Back A, Polavaropu P (1987) Vibrational assignments and isomerization rate-constants from time-dependent FT-IR spectra of sugars. Carbohydr. Res. 165: 173–187.

    Google Scholar 

  • Bhattacharjee SS, Yaphe W (1979) Enzymic and N.M.R. spectroscopic analyses of agar-type polysaccharides. In Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin/New York 645–655.

    Google Scholar 

  • Black WAP, Blakemore WR, Colquhoun JA, Dewar ET (1965) Evaluation of some red marine algae as a source of carrageenan and of its κ and λ components. J. Sci. Food Agr. 16: 573–585.

    Google Scholar 

  • Cabassi F, Casu B, Perlin AS (1978) Infrared absorption and Raman scattering of sulfate groups of heparin and related glycosaminoglycans in aqueous solution. Carbohydr. Res. 63: 1–11.

    Google Scholar 

  • Christiaen D, Bodard M (1983) Spectroscopie infrarouge de films d'agar deGracilaria verrucosa (Huds.) Papenfuss. Bot. mar. 26: 425–427.

    Google Scholar 

  • Conley RT (1966) Infrared Spectroscopy. Allyn and Bacon Inc., Boston, 179–181.

    Google Scholar 

  • Doty MS, Santos GA (1978) Carrageenans from tetrasporic and cystocarpicEucheuma species. Aquatic Bot. 4: 143–149.

    Google Scholar 

  • Lloyd AG, Dogson KS, Price RG, Rose FA (1961) Infrared studies on sulphate esters. I. Polysaccharides sulphates. Biochem. Biophys. Acta 46: 108–115.

    Google Scholar 

  • Maddam WF, Mead WL (1982) The measurement of derivative i.r. spectra—I. Background studies. Spectrochim. Acta 38A: 437–444.

    Google Scholar 

  • Malfait T, Van Dael H, Van Cauwelaert F (1987) Raman spectroscopic analysis of the sodium salt of kappa-carrageenan and related compounds in solution. Carbohydr. Res. 163: 9–14.

    Google Scholar 

  • Malfait T, Van Dael M, Van Cauwelaert F (1989) Molecular structure of carrageenans and kappa oligomers: a Raman spectroscopy study. Int. J. Biol. Macromol. 11: 259–264.

    Google Scholar 

  • Mathlouthi M, Koenig JL (1986) Vibrational spectra of carbohydrates. Adv. Carbohydr. Chem. 44: 7–66.

    Google Scholar 

  • Matsuhiro B, Rivas P, Lamba D (1992) Polisacáridos de fases nucleares deGracilaria chilensis. Bol. Soc. chil. Quím. 37: 89–95.

    Google Scholar 

  • Michell AJ (1988) Second derivative F.T.-I.R. spectra of celluloses I and II and related mono- and oligosaccharides. Carbohydr. Res. 173: 185–195.

    Google Scholar 

  • Michell AJ (1990) Second-derivative F.T.-I.R. spectra of native celluloses. Carbohydr. Res. 197: 53–60.

    Google Scholar 

  • Mollion J, Andriantsiferana M, Sekkal M (1990) A study of the phycocolloids fromGelidium madagascariense andEucheuma denticulatum (Rhodophyta) collected on the south coasts of Madagascar. In: Lindstrom SC, Gabrielson PW (eds), Thirteenth International Seaweed Symposium. Developments in Hydrobiology 58. Kluwer Academic Publishers, Dordrecht, 655–659. Reprinted from Hydrobiologia 204/205.

    Google Scholar 

  • Nakamoto K (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. J. Wiley & Sons, New York, 248–250.

    Google Scholar 

  • Neely WB (1957) Infrared spectra of carbohydrates. Adv. Carbohydr. Chem. 12: 13–33.

    Google Scholar 

  • Percival E, McDowell RH (1967) Chemistry and Enzymology of Marine Algal Polysaccharides, Academic Press, London, 127–154.

    Google Scholar 

  • Perkins WD (1986) Fourier transform-infrared spectroscopy Part I. Instrumentation. J. Chem. Ed. 63: A5–A10.

    Google Scholar 

  • Perkins WD (1987a) Fourier transform-infrared spectroscopy Part II. Advantages of FT-IR. J. Chem. Ed. 64: A269–A271.

    Google Scholar 

  • Perkins WD (1987b) Fourier transform-infrared spectroscopy Part III Applications. J. Chem. Ed. 64: A296–A305.

    Google Scholar 

  • Polavarapu PL, Chatterjee SR, Michalska DF (1985) Infrared investigations of sucrose in aqueous solutions. Carbohydr. Res. 137: 253–258.

    Google Scholar 

  • Rochas C, Lahaye M (1989) Solid state13C NMR spectroscopy of red seaweeds, agars and carrageenans. Carbohydr. Polym. 10: 189–204.

    Google Scholar 

  • Stancioff DJ, Stanley NF (1969) Infrared and chemical studies on algal polysaccharides. Proc. int. Seaweed Symp. 6: 595–609.

    Google Scholar 

  • Tul'chinsky VM, Zurabyan SE, Asankozhoev KA (1976) Study of the infrared spectra of oligosaccharides in the region 1000–40 cm-1. Carbohydr. Res. 51: 1–8.

    Google Scholar 

  • Whyte JNC, Hosford SPC, Englar JR (1985) Assignment of agar or carrageenan structures to red algal polysaccarides. Carbohydr. Res. 140: 336–341.

    Google Scholar 

  • Yaylayan VA, Ismail AA (1992) Determination of the effect of temperature on the concentration ofketo form ofd-fructose by FT-IR spectroscopy. J. Carbohydr. Chem. 11: 149–158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuhiro, B., Rivas, P. Second-derivative Fourier transform infrared spectra of seaweed galactans. J Appl Phycol 5, 45–51 (1993). https://doi.org/10.1007/BF02182421

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02182421

Key words

Navigation