Skip to main content
Log in

Blue-green algae (cyanobacteria): prospects and perspectives

  • Production of Micro and Macroalgae with Saline Water
  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Photosynthetic, prokaryotic blue-green algae (cyanobacteria) occur in a wide range of natural habitats of diverse ionic composition and as such, represent an important source of biological material for biosolar energy conversion programs using saline water. The gasvacuolate, filamentous Spirulina is grown in ‘seminatural’ culture in Lake Texcoco, Mexico, as a major source of single-cell protein for animal nutrition. Pilot-scale trials in other areas of the world have also demonstrated the suitability of blue-green algae, including Spirulina, for growth under brackish conditions. The carbohydrate accumulation profiles of blue-green algae differ in isolates from freshwater, marine and hypersaline habitats, with a trend towards sucrose or trehalose accumulation in stenohaline freshwater strains grown in media containing NaCl, while euryhaline and marine forms frequently accumulate glucosylglycerol. Many halotolerant isolates from hypersaline habitats accumulate glycinebetaine in response to osmotic stress. This knowledge may provide scope for future improvement in the N2 fixation rates of blue-green algae in saline media, using betaine-accumulating N2-fixing strains in preference to other, saltsensitive isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson S and Dubinsky Z 1982 Mass production of algae. Experientia 38, 36–40.

    Article  Google Scholar 

  2. Baumann P and Baumann L 1981 The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and AlcaligenesIn The Prokaryotes, Vol II. Eds. M P Starr, H Stolp, H G Trüper, A Balows and H G Schlegel. pp 1302–1331. Springer, Berlin.

    Google Scholar 

  3. Ben-Amotz A and Avron M 1983 Accumulation of metabolites by halotolerant algae and its industrial poential. Annu. Rev. Microbiol. 37, 95–119.

    Google Scholar 

  4. Blumwald E and Tel-Or E 1982 Osmoregulation and cell composition in salt adaptation ofNostoc muscorum. Arch. Microbiol. 132, 168–172.

    Article  Google Scholar 

  5. Blumwald E, Mehlhorn R J and Packer L 1983 Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques. Proc. Nat. Acad. Sci. USA 80, 2599–2602.

    Google Scholar 

  6. Blumwald E, Mehlhorn R J and Packer L 1983 Ionic osmoregulation during salt adaptation of the cyanobacteriumSynechococcus 6311. Plant Physiol. 73, 377–380.

    Google Scholar 

  7. Borowitzka L J, Demmerle S, Mackay M A and Norton R S 1980 Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science 210, 650–651.

    Google Scholar 

  8. Bouillard L and Le Rudulier D 1983 Nitrogen fixation under osmotic stress: enhancement of nitrogenase biosynthesis inKlebsiella pneumoniae by glycinebetaine., Physiol. Veg. 21, 447–457.

    Google Scholar 

  9. Boyd C E 1973 Amino acid composition of freshwater algae. Arch Hydrobiol. 72, 1–9.

    Google Scholar 

  10. Braunegg G, Sonnleitner B and Lafferty R M 1978 A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37.

    Article  Google Scholar 

  11. Campbell J, Stevens S E and Balkwill D L 1982 Accumulation of poly-β-hydroxybutyrate inSpirulina platensis. J. Bacteriol. 149, 361–363.

    PubMed  Google Scholar 

  12. Carr N J 1966 The occurrence of poly-β-hydroxybutyrate in the blue-green algaChlorogloea fritschii. Biochim. Biophys. Acta 120, 308–310.

    PubMed  Google Scholar 

  13. Casu B, Naggi A and Vercelloti J R 1980 Polisaccaridi di riserva dellaSpirulina platensis, estrazione e caratterizzazioneIn Prospettive della coltura di Spirulina in Italia. Cons. Naz. delle Rich. Rome. pp 145–153.

    Google Scholar 

  14. Ciferri O 1983 Spirulina, the edible microorganism. Microbiol. Rev. 47, 551–578.

    PubMed  Google Scholar 

  15. Farrar W V 1966 Tecuitlatl: a glimpse of Aztec food technology. Nature London 211, 341–342.

    Google Scholar 

  16. Galinski E A and Trüper H G 1982 Betaine, a compatible solute in the extremely halophilic phototrophic bacteriumEctothiorhodospira halochloris. FEMS Microbiol. Lett. 13, 357–360.

    Article  Google Scholar 

  17. Jones K and Stewart W D P 1969 Nitrogen turnover in marine and brackish habitats. III the production of extracellular nitrogen byCalothrix scopulorum. J. Mar. Biol. Ass. UK 49, 701–716.

    Google Scholar 

  18. Kollman V H, Hanners J L, London R E, Adame E G and Walker T E 1979 Photosynthetic preparation and characterization of13C-labelled carbohydrates inAgmenellum quadruplicatum. Carbohydr. Res. 73, 193–202.

    Article  Google Scholar 

  19. Leavitt R I 1983 Process for the preparation of L-proline by cultivating algae. US Patent No 4383038, US Patent Office.

  20. Leonard J 1966 The 1964–65 Belgian trans-Saharan expedition. Nature 209, 126–128.

    Google Scholar 

  21. Mackay M A, Norton R S and Borowitzka L J 1983 Marine blue-green algae have a unique osmoregulatory system. Mar. Biol. 73, 301–307.

    Article  Google Scholar 

  22. Mohammad F A A, Reed R H and Stewart W D P 1983 The halophilic cyanobacteriumSynechocystis DUN52 and its osmotic responses. FEMS Microbiol. Lett. 16, 287–290.

    Article  Google Scholar 

  23. Reed R H and Stewart W D P 1983 Physiological responses ofRivularia atra to salinity: osmotic adjustment in hyposaline media. New Phytol. 95, 595–603.

    Google Scholar 

  24. Reed R H, Chudek J A, Foster Rand Stewart W D P 1984 Osmotic adjustment in cyanobacteria from hypersaline environments. Arch. Microbiol. 138, 333–337.

    Article  Google Scholar 

  25. Reed R H, Richardson D L, Warr S R C and Stewart W D P 1984 Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol. 130, 1–4.

    Google Scholar 

  26. Riccardi G, Sora S and Ciferri O 1981 Production of amino acids by analog-resistant mutants of the cyanobacteriumSpirulina platensis. J. Bacteriol. 147, 1002–1007.

    PubMed  Google Scholar 

  27. Riccardi G, Cella R, Camerino G and Ciferri O 1983 Resistance to azetidine-2-carboxylic acid and sodium chloride tolerance in carrot cell cultures andSpirulina platensis. Plant Cell Physiol. 24, 1073–1078.

    Google Scholar 

  28. Richmond A and Vonshak A 1978 Spirulina culture in Israel. Arch. Hydrobiol. Beich. Ergebn. Limnol. 11, 274–280.

    Google Scholar 

  29. Richmond A, Karg S and Boussiba S 1982 Effects of bicarbonate and carbon dioxide on the competition betweenChlorella vulgaris andSpirulina platensis. Plant Cell Physiol. 23, 1411–1417.

    Google Scholar 

  30. Rippka R, Deruelles J, Waterbury J B, Herdman M and Stanier R Y 1979 Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.

    Google Scholar 

  31. Santillan C 1982 Mass production of Spirulina. Experientia 38, 40–43.

    Article  Google Scholar 

  32. Saxena P N, Ahmad M R, Shyam R and Misra P S 1982 Chemical composition of sewagegrownSpirulina platensis. Experientia 38, 1438.

    Article  Google Scholar 

  33. Stacey G, Van Baalen C and Tabita F R 1977 Isolation and characterization of a marineAnabaena sp. capable of rapid growth on molecular nitrogen. Arch. Microbiol. 114, 197–201.

    Article  Google Scholar 

  34. Stewart W D P 1980 Some aspects of structure and function in N2-fixing cyanobacteria. Annu. Rev. Microbiol. 34, 497–536.

    Article  PubMed  Google Scholar 

  35. Venkataraman L V 1983 Blue-green alga Spirulina. CFTRI Press, Mysore, India.

    Google Scholar 

  36. Vonshak A, Boussiba S, Abelovich A and Richmond A 1983 Production of Spirulina biomass: maintenance of monoalgal cultures outdoors. Biotechnol. Bioeng. 25, 341–349.

    Article  Google Scholar 

  37. Warr S R C, Reed R H and Stewart W D P 1984 Physiological responses ofNodularia harveyana to osmotic stress. Mar. Biol. 79, 21–26.

    Article  Google Scholar 

  38. Wyn Jones R G and Gorham J 1983 OsmoregulationIn Encyclopedia of Plant Physiology Vol 12C. Eds. O L Lange, P S Nobel, C B Osmond and H Ziegler. pp 35–58. Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, R.H., Warr, S.R.C., Richardson, D.L. et al. Blue-green algae (cyanobacteria): prospects and perspectives. Plant Soil 89, 97–106 (1985). https://doi.org/10.1007/BF02182236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02182236

Key words

Navigation