Journal of Statistical Physics

, Volume 87, Issue 1–2, pp 273–291 | Cite as

Dimensional crossover in the large-N limit

  • Denjoe O'Connor
  • C. R. Stephens
  • A. J. Bray


We consider dimensional crossover for anO(N) Landau-Ginzburg-Wilson model on ad-dimensional film geometry of thicknessL in the large-N limit. We calculate the full universal crossover scaling forms for the free energy and the equation of state. We compare the results obtained using “environmentally friendly” renormalization with those found using a direct, non-renormalization-group approach. A set of effective critical exponents are calculated and scaling laws for these exponents are shown to hold exactly, thereby yielding nontrivial relations between the various thermodynamic scaling functions.

Key Words

Renormalization group finite size scaling dimensional crossover scaling functions effective exponents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Denjoe O'Connor and C. R. Stephens,Nucl. Phys. B 360:297 (1991);J. Phys. A 25:101 (1992);Proc. R. Soc. 444:2287 (1994); C. R. Stephens.J. Mag. Mag. Mat. 104–107:297 (1992); F. Freire, Denjoe O'Connor, and C. R. Stephens,J. Stat. Phys. 74:219 (1994).Google Scholar
  2. 2.
    Denjoe O'Connor and C. R. Stephens,Int. J. Mod. Phys. A 9:2805 (1994);Phys. Rev. Lett. 72:506 (1994).Google Scholar
  3. 3.
    G. A. Baker, B. G. Nickel, and D. I. Meiron,Phys. Rev. B 17:1365 (1978).Google Scholar
  4. 4.
    K. binder, InPhase Transitions and Critical Phenomena, Vol. 5B, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976); P. Schilbe, S. Siebentritt, and K. H. Rieder,Phys. Lett. A 216:20 (1996); M. Novotny,Phys. Rev. Lett. 70:109 (1993).Google Scholar
  5. 5.
    T. W. Capehart and M. E. Fisher,Phys. Rev. B 13:5021 (1976).Google Scholar
  6. 6.
    T. H. Berlin and M. Kac,Phys. Rev. 89:821 (1952).Google Scholar
  7. 7.
    H. E. Stanley,Phys. Rev. 176:718 (1968).Google Scholar
  8. 8.
    K. G. Wilson,Phys. Rev. D 7:2911 (1973).Google Scholar
  9. 9.
    E. Brézin and S. R. Wadia,The Large-N Limit in Quantum Field Theory and Statistical Physics (World Scientific, Singapore, 1993).Google Scholar
  10. 10.
    M. Barber and M. E. Fisher,Ann Phys. 77:1 (1973).Google Scholar
  11. 11.
    M. E. Fisher, and V. Privman,Commun. Math. Phys. 103:527 (1986); J. G. Brankov.J. Stat. Phys. 56:309 (1989); J. G. Brankov and N. S. Tonchev,J. Stat. Phys. 59:1431 (1990).Google Scholar
  12. 12.
    J. Rudnick, InFinite Size Scaling and Numerical Simulations of Statistical Systems. V. Privman, ed. (World Scientific, Singapore, 1990).Google Scholar
  13. 13.
    S. Allen and R. K. Pathria,Phys. Rev. B 50:6765 (1994).Google Scholar
  14. 14.
    M. Krech and S. Dietrich,Phys. Rev. A 46:1886 (1992);Phys. Rev. Lett. 66:235 (1991); M. Krech,The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994).Google Scholar
  15. 15.
    F. Freire, Denjoe O'Connor, and C. R. Stephens,Phys. Rev. E 53:189 (1996).Google Scholar
  16. 16.
    E. Brézin,Ann. N. Y. Acad. Sci. 410:339 (1983); S. Allen and R. K. PathriaCan. J. Phys. 67:952 (1989).Google Scholar
  17. 17.
    G. S. Joyce, InPhase Transitions and Critical Phenomena, Vol. 2. C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).Google Scholar
  18. 18.
    S. Singh and P. K. Pathria,Phys. Rev. B 36:3769 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Denjoe O'Connor
    • 1
  • C. R. Stephens
    • 2
  • A. J. Bray
    • 3
  1. 1.Dublin Institute for Advanced StudiesDublin 4Ireland
  2. 2.I.C.N.U.N.A.M., Circuito ExteriorMéxicoMéxico
  3. 3.Department of Theoretical Physics, The UniversityManchesterU.K.

Personalised recommendations