Skip to main content
Log in

Endo.SK1: an inducible site-specific endonuclease from yeast mitochondria

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Site-specific endonucleases have been found in various eukaryotic organelles such as mitochondria, chloroplasts and nuclei. These endonucleases initiate site-specific or homologous gene conversion in mitochondrial and nuclear DNA. Here, we report a new site-specific endonuclease activity, Endo.SK1, identified in mitochondria of strain SK1, a homothallic diploid strain ofSaccharomyces cerevisiae. Nucleotide sequences around the Endo.SK1-cleavage sites are different from those of known yeast site-specific endonucleases. The Endo.SK1 activity is, at least partly, specified by a gene in the SK1-derived mitochondria. A novel feature of the Endo.SK1 activity is its inducibility: the endonuclease activity was induced by ca. 40-fold by transfer of cells from a glucose medium into an acetate medium, and was then repressed. This transient induction was independent of the ploidy level of the cells, and coincided with induction of fumarase, a mitochondrial enzyme involved in the TCA cycle. Co-induction and co-repression of the mitochondrial site-specific endonuclease activity and a respiration-related enzyme indicate that the endonuclease activity is regulated in response to physiological conditions, and suggest a possible role for the endonuclease in mitochondrial DNA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alani E, Padmore R, Kleckner N (1990) Analysis of wild-type andrad 50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436

    Article  PubMed  Google Scholar 

  • Aris JP, Blobel G (1988) Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J Cell Biol 107:17–31

    Article  PubMed  Google Scholar 

  • Birky CW Jr, Skavaril RV (1976) Maintenance of genetic homogeneity in systems with multiple genomes. Genet Res (Camb) 27:249–265

    Google Scholar 

  • Bugaichuk UD, Deadman M, Errington J, Savva D (1984) Restriction enzyme analysis ofBacillus subtilis bacteriophage Φ105 DNA. J Gen Microbiol 130:2165–2167

    PubMed  Google Scholar 

  • Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination inS. cerevisiae. Cell 61:1089–1101

    Article  PubMed  Google Scholar 

  • Colleaux L, d'Auriol L, Betermier M, Cottarel G, Jacquier A, Galibert F, Dujon B (1986) Universal code equivalent of a yeast mitochondrial intron reading frame is expressed inE. coli as a specific double strand endonuclease. Cell 44:521–533

    Article  PubMed  Google Scholar 

  • Colleaux L, d'Auriol L, Galibert F, Dujon B (1988) Recognition and cleavage site of the intron-encodedomega transposase. Proc Natl Acad Sci USA 85:6022–6026

    PubMed  Google Scholar 

  • Daum G, Bohni PC, Schatz G (1982) Import of proteins into mitochondria. Cytochromeb 2 and cytochromec peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257:13028–13033

    PubMed  Google Scholar 

  • De Massy B, Nicolas A (1993) The control in cis of the position and the amount of theARG4 meiotic double-strand break ofSaccharomyces cerevisiae. EMBO J 12:1459–1466

    PubMed  Google Scholar 

  • Delahodde A, Goguel V, Becam AM, Creusot F, Perea J, Banroques J, Jacq C (1989) Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell 56:431–441

    Article  PubMed  Google Scholar 

  • Dujon B (1989) Group I introns as mobile genetic elements: facts and mechanistic speculations — a review. Gene 82:91–114

    Article  PubMed  Google Scholar 

  • Dujon B, Belfort M, Butow RA, Jacq C, Lemieux C, Perlman PS, Vogt VM (1989) Mobile introns: definition of terms and recommended nomenclature. Gene 82:115–118

    Article  PubMed  Google Scholar 

  • Gimble FS, Thorner J (1993) Purification and characterization of VDE, a site-specific endonuclease from the yeastSaccharomyces cerevisiae. J Biol Chem 268:21844–21853

    PubMed  Google Scholar 

  • Kane SM, Roth R (1974) Carbohydrate metabolism during ascospore development in yeast. J Bacteriol 118:8–14

    PubMed  Google Scholar 

  • Kawasaki K, Takahashi M, Natori M, Shibata T (1991) DNA sequence recognition by a eukaryotic sequence-specific endonuclease, Endo.SceI, fromSaccharomyces cerevisiae. J Biol Chem 266:5342–5347

    PubMed  Google Scholar 

  • Kostriken R, Heffron F (1984) The product of theHO gene is a nuclease: purification and characterization of the enzyme. Cold Spring Harbor Symp Quant Biol 49:89–96

    PubMed  Google Scholar 

  • Kostriken R, Strathern JN, Klar AJS, Hicks JB, Heffron F (1983) A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell 35:167–174

    Article  PubMed  Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622

    Article  PubMed  Google Scholar 

  • Ling F, Makishima F, Morishima N, Shibata T (1995) A nuclear mutation defective in mitochondrial recombination in yeast. EMBO J 14:4090–4101

    PubMed  Google Scholar 

  • Morishima N, Nakagawa K, Yamamoto E, Shibata T (1990) A subunit of yeast site-specific endonucleaseSceI is a mitochondrial version of the 70-kDa heat shock protein. J Biol Chem 265:15189–15197

    PubMed  Google Scholar 

  • Nakagawa K, Hashikawa J, Makino O, Ando T, Shibata T (1988) Subunit-structure of a yeast site-specific endo-deoxyribonuclease, Endo.SceI: a study using monoclonal antibodies. Eur J Biochem 171:23–29

    PubMed  Google Scholar 

  • Nakagawa K, Morishima N, Shibata T (1991) A maturase-like subunit of the sequence-specific endonuclease Endo.SceI from yeast mitochondria. J Biol Chem 266:1977–1984

    PubMed  Google Scholar 

  • Nakagawa K, Morishima N, Shibata T (1992) An endonuclease with multiple cutting sites, Endo.SceI, initiates genetic recombination at its cutting site in yeast mitochondria. EMBO J 11:2707–2715

    PubMed  Google Scholar 

  • Nickoloff JA, Chen EY, Heffron F (1986) A 24-base-pair DNA sequence from theMAT locus stimulates intergenic recombination in yeast. Proc. Natl Acad Sci USA 83:7831–7835

    PubMed  Google Scholar 

  • Nicolas A, Treco D, Schultes NP, Szostak JW (1989) An initiation site for meiotic gene conversion in the yeastSaccharomyces cerevisiae. Nature 338:35–39

    Article  PubMed  Google Scholar 

  • Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis inS. cerevisiae. Cell 66:1239–1256

    Article  PubMed  Google Scholar 

  • Perea J, Desdouets C, Schapira M, Jacq C (1993) I-SceIII: a novel group-I intron-encoded endonuclease from yeast mitochondria. Nucleic Acids Res 21:358

    PubMed  Google Scholar 

  • Perlman PS, Butow RA (1989) Mobile introns and intron-encoded proteins. Science 246:1106–1109

    PubMed  Google Scholar 

  • Porter SE, White MA, Petes TD (1993) Genetic evidence that the meiotic recombination hotspot at theHIS4 locus ofSaccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics 134:5–19

    PubMed  Google Scholar 

  • Racker E (1950) Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta 4:211–214

    PubMed  Google Scholar 

  • Rocco V, de Massy B, Nicolas A (1992) TheSaccharomyces cerevisiae ARG4 initiator of meiotic gene conversion and its associated double-strand DNA breaks can be inhibited by transcriptional interference. Proc Natl Acad Sci USA 89:12068–12072

    PubMed  Google Scholar 

  • Rutberg L (1969) Mapping of a temperate bacteriophage active onBacillus subtilis. J Virol 3:38–44

    PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Sargueil B, Delahodde A, Hatat D, Tian GL, Lazowska J, Jacq C (1991) A new specific DNA endonuclease activity in yeast mitochondria. Mol Gen Genet 225:340–341

    Article  PubMed  Google Scholar 

  • Schapira M, Desdouets C, Jacq C, Perea J (1993) I-SceIII an intronencoded DNA endonuclease from yeast mitochondria — asymmetrical DNA binding properties and cleavage reaction. Nucleic Acids Res 21:3683–3689

    PubMed  Google Scholar 

  • Seraphin B, Faye G, Hatat D, Jacq C (1992) The yeast mitochondrial intron aI5α: associated endonuclease activity and in vivo mobility. Gene 113:1–8

    Article  PubMed  Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Shibata T, Ando T (1975) In vitro modification and restriction of phageΦ105C DNA withBacillus subtilis N cell-free extract. Mol Gen Genet 138:269–279

    Article  PubMed  Google Scholar 

  • Shibata T, Ikawa S, Kim C, Ando T (1976) Site-specific deoxyribonucleases inBacillus subtilis and otherBacillus strains. J Bacteriol 128:473–476

    PubMed  Google Scholar 

  • Shibata T, Watabe H, Kaneko T, Iino T, Ando T (1984) On the nucleotide sequence recognized by a eukaryotic site-specific endonuclease, Endo.SceI from yeast. J Biol Chem 259:10499–10506

    PubMed  Google Scholar 

  • Shibata T, Nakagawa K-i, Morishima N (1995) Multi-site-specific endonucleases and the initiation of homologous genetic recombination in yeast. Adv Biophys 31:77–91

    Article  PubMed  Google Scholar 

  • Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    Article  PubMed  Google Scholar 

  • Watabe H, Shibata T, Ando T (1981) Site-specific endo-deoxyribonucleases in eukaryotes: endonucleases of yeasts,Saccharomyces andPichia. J Biochem (Tokyo) 90:1623–1632

    PubMed  Google Scholar 

  • Watabe H, Iino T, Kaneko T, Shibata T, Ando T (1983) A new class of site-specific endo-deoxyribonucleases: Endo.SceI isolated from a eukaryote,Saccharomyces cerevisiae. J Biol Chem 258:4663–4665

    PubMed  Google Scholar 

  • Wenzlau JM, Saldanha RJ, Butow RA, Perlman PS (1989) A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell 56:421–430

    Article  PubMed  Google Scholar 

  • Wernette C, Saldanha R, Smith D, Ming D, Perlman PS, Butow RA (1992) Complex recognition site for the group I intron-encoded Endonuclease I-SceII. Mol Cell Biol 12:716–723

    PubMed  Google Scholar 

  • Williamson DH, Johnston LH, Fennell DJ, Simchen G (1983) The timing of the S phase and other nuclear events in yeast meiosis. Exp Cell Res 145:209–217

    PubMed  Google Scholar 

  • Zenvirth D, Arbel T, Sherman A, Goldway M, Klein S, Simchen G (1992) Multiple sites for double-strand breaks in whole meiotic chromosomes ofSaccharomyces cerevisiae. EMBO J 11:3441–3447

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Devoret

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, K., Keszenman-Pereyra, D., Shibata, T. et al. Endo.SK1: an inducible site-specific endonuclease from yeast mitochondria. Molec. Gen. Genet. 250, 395–404 (1996). https://doi.org/10.1007/BF02174027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174027

Key words

Navigation