Skip to main content
Log in

Identification of cis-acting DNA sequences involved in the transcription of the virulence regulatory genespvR inSalmonella typhimurium

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The SpvR protein is a DNA-binding protein of the LysR family, required for the transcription of thespvABCD virulence operon ofSalmonella typhimurium. An alternative sigma factor, σS (RpoS), in conjunction with SpvR, controls the transcription of thespvR gene. In this study, we used a combination of primer extension experiments and deletion/fusion analyses of thespvR gene to identify sequences involved inspvR transcription inS. typhimurium. When induced in the stationary phase of growth in rich medium or during carbon starvation, transcription ofspvR inS. typhimurium is driven by a single promoter (spvRp1) and initiates 17 nucleotides upstream of thespvR start codon. The level ofspvR transcription originating atspvRp1 was 20-fold higher in the wild-type strain than in therpoS mutant. In both strains, however, transcription atspvRp1 requires the SpvR protein. 5′ Deletions up to position −86, relative to thespvR start codon, did not inhibit inducibility by σS and/or SpvR. In contrast, 5′ deletion up to −75 abolished the activation ofspvRp1 by SpvR in both the wild-type strain andrpoS mutant. Within the 11-bp sequence lying between position −86 and position −75, a 10-bp consensus motif TNTNTGCANA, present in both thespvR andspvA promoter regions, was identified and may contain the DNA recognition site for SpvR. In addition, we detected initiation of transcription within thespvR coding region. This finding may have implications for comparative studies of regulation withspvR gene fusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe A, Matsui H, Danbara H, Tanaka K, Takahashi H, Kawahara K (1994) Regulation ofspvR gene expression ofSalmonella virulence plasmid pKDSC50 inSalmonella choleraesuis serovar Choleraesuis. Mol Microbiol 12:779–787

    PubMed  Google Scholar 

  • Abe A, Kawahara K (1995) Transcriptional regulation and promoter sequence of thespvR gene of virulence plasmid pKDSC50 inSalmonella choleraesuis serovar Choleraesuis. FEMS Microbiol Lett 129:225–230

    PubMed  Google Scholar 

  • Arnqvist A, Olsen A, Normark S (1994) σS-dependent growth-phase induction of thecsgBA promoter inEscherichia coli can be achieved in vivo by σ70 in the absence of the nucleoid-associated protein H-NS. Mol Microbiol 13:1021–1032

    PubMed  Google Scholar 

  • Barth M, Marschall C, Muffler A, Fischer D, Hengge-Aronis R (1995) Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of σS and many σS-dependent genes inEscherichia coli. J Bacteriol 177:3455–3464

    PubMed  Google Scholar 

  • Casadaban M, Cohen SN (1980) Analysis of a gene control signal by DNA fusion and cloning inE. coli. J Mol Biol 138:179–207

    PubMed  Google Scholar 

  • Chen C-Y, Buchmeier NA, Libby S, Fang FC, Krause M, Guiney DG (1995) Central regulatory role for the RpoS sigma factor in expression ofSalmonella dublin plasmid virulence genes. J Bacteriol 177:5303–5309

    PubMed  Google Scholar 

  • Coynault C, Robbe-Saule V, Popoff MY, Norel F (1992) Growth phase and SpvR regulation of transcription ofSalmonella typhimurium spvABC virulence genes. Microb Pathogen 13:133–143

    Google Scholar 

  • Ding Q, Kusano S, Villarejo M, Ishihama A (1995) Promoter selectivity control ofEscherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by EσD and EσS holoenzymes. Mol Microbiol 16:649–656

    PubMed  Google Scholar 

  • Fang FC, Krause M, Roudier C, Fierer J, Guiney DG (1991) Growth regulation of aSalmonella plasmid gene essential for virulence. J Bacteriol 173:6783–6789

    PubMed  Google Scholar 

  • Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J, Harwood J, Guiney DG (1992) The alternative σ factor KatF (RpoS) regulatesSalmonella virulence. Proc Natl Acad Sci USA 89:11978–11982

    PubMed  Google Scholar 

  • Farinha MA, Kropinaki AM (1990) Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172:3496–3499

    PubMed  Google Scholar 

  • Fierer J, Eckmann L, Fang F, Pfeifer C, Finlay BB, Guiney D (1993) Expression of theSalmonella virulence plasmid genespvB in cultured macrophages and nonphagocytic cells. Infect Immun 61:5231–5236

    PubMed  Google Scholar 

  • Gulig PA, Danbara H, Guiney DG, Lax AJ, Norel F, Rhen M (1993) Molecular analysis ofspv virulence genes of theSalmonella virulence plasmids. Mol Microbiol 7:825–830

    PubMed  Google Scholar 

  • Heiskanen P, Taira S, Rhen M (1994) Role ofrpoS in the regulation ofSalmonella plasmid virulence (spv) genes. FEMS Microbiol Lett 123:125–130

    PubMed  Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role ofrpoS in early stationary phase gene regulation inE. coli. Cell 72:165–168

    PubMed  Google Scholar 

  • Huisman G, Kolter R (1994) Regulation of gene expression at the onset of stationary phase inEscherichia coli. Regulation of bacterial differentiation (Piggot P et al. eds). American Society for Microbiology, Washington DC, pp 21–40

    Google Scholar 

  • Kolb A, Kotlarz D, Kusano S, Ishihama A (1995) Selectivity of theE. coli RNA polymerase Eσ38 for overlapping promoters and ability to support CRP activation. Nucleic Acids Res 23:819–826

    PubMed  Google Scholar 

  • Kowarz L, Coynault C, Robbe-Saule V, Norel F (1994) TheSalmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence and regulation ofspvR andspvABCD virulence plasmid genes. J Bacteriol 176:6852–6860

    PubMed  Google Scholar 

  • Krause M, Roudier C, Fierer J, Hardwood J, Guiney DG (1991) Molecular analysis of the virulence locus of theSalmonella dublin plasmid pSDL2. Mol Microbiol 5:307–316

    PubMed  Google Scholar 

  • Krause M, Fang FC, El-Gedaily A, Libby S, Guiney DG (1995) Mutational analysis of SpvR binding to DNA in the regulation of theSalmonella plasmid virulence operon. Plasmid 34:37–47

    PubMed  Google Scholar 

  • Lange R, Hengge-Aronis (1994) The cellular concentration of the σS subunit of RNA polymerase inEscherichia coli is controlled at the levels of transcription, translation and protein stability. Genes Dev 8:1600–1612

    PubMed  Google Scholar 

  • Loewen PC, Hengge-Aronis R (1994) The role of the sigma factor σS (KatF) in bacterial global regulation. Annu Rev Microbiol 48:53–80

    PubMed  Google Scholar 

  • Lonetto M, Gribskov M, Gross CA (1992) The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    PubMed  Google Scholar 

  • McCann MP, Fraley CD, Matin A (1993) The putative σ factor KatF is regulated posttranscriptionally during carbon starvation. J Bacteriol. 175:2143–2149

    PubMed  Google Scholar 

  • Matsui H, Abe A, Suzuki S, Kijima M, Tamura Y, Nakamura M, Kawahara K, Danbara H (1993) Molecular mechanism of the regulation of expression of plasmid-encoded mouse bacteremia (mba) genes inSalmonella serovar Choleraesuis. Mol Gen Genet 236:219–226

    PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Nguyen LH, Jensen DB, Thompson NE, Gentry DR, Burgess RR (1993) In vitro functional characterization of overproducedEscherichia coli katF/rpoS gene product. Biochemistry 32:11112–11117

    PubMed  Google Scholar 

  • Norel F, Pisano M-R, Nicoli J, Popoff MY (1989) A plasmid-borne virulence region (2.8 kb) fromSalmonella typhimurium contains two open reading frames. Res Microbiol 140:627–630

    PubMed  Google Scholar 

  • Norel F, Robbe-Saule V, Popoff MY, Coynault C (1992) The putative sigma factor KatF (RpoS) is required for the transcription of theSalmonella typhimurium virulence genespvB inEscherichia coli. FEMS Microbiol Lett 99:271–276

    Google Scholar 

  • Pardon P, Popoff MY, Coynault C, Marly I, Miras I (1986) Virulence associated plasmids ofSalmonella serotype Typhimurium in experimental murine infection. Ann Inst Pasteur 137B:47–60

    Google Scholar 

  • Parsek MR, Ye RW, Pun P, Chakrabarty AM (1994) Critical nucleotides in the interaction of a LysR-type regulator with its target promoter region:catBC promoter activation by CatR. J Biol Chem 269:11279–11284

    PubMed  Google Scholar 

  • Pullinger GB, Baird GD, Williamson CM, Lax AJ (1989) Nucleotide sequence of a plasmid gene involved in the virulence of salmonellas. Nucleic Acids Res 17:7983

    PubMed  Google Scholar 

  • Robbe-Saule V, Coynault C, Norel F (1995) The live oral vaccine Ty21a is arpoS mutant and is susceptible to various environmental stresses. FEMS Microbiol Lett 126:171–176

    PubMed  Google Scholar 

  • Rhen M, Riikonen P, Taira S (1993) Transcriptional regulation ofSalmonella enterica virulence plasmid genes in cultured macrophages. Mol Microbiol 10:45–56

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626

    PubMed  Google Scholar 

  • Siegele DA, Kolter R (1992) Life after log. J Bacteriol 174:345–348

    PubMed  Google Scholar 

  • Spink JM, Pullinger GD, Wood MW, Lax AJ (1994) Regulation ofspvR, the positive regulatory gene ofSalmonella plasmid virulence genes. FEMS Microbiol Lett 116:113–122

    PubMed  Google Scholar 

  • Taira S, Baumann M, Riikonen P, Sukupolvi S, Rhen M (1991) Amino-terminal sequence analysis of four plasmid-encoded virulence-associated proteins ofSalmonella typhimurium. FEMS Microbiol Lett 77:319–324

    Google Scholar 

  • Taira S, Heiskanen P, Hurme R, Heikkila H, Riikonen P, Rhen M (1995) Evidence for functional polymorphism of thespvR gene regulating virulence gene expression inSalmonella. Mol Gen Genet 246:437–444

    PubMed  Google Scholar 

  • Tanaka K, Takayanagi, Y, Fujita N, Ishihama A, Takahashi H (1993) Heterogeneity of the principal sigma factor inEscherichia coli: therpoS gene product, sigma-38, is a second principal sigma factor of RNA polymerase is stationary-phaseEscherichia coli. Proc Natl Acad Sci USA 90:3511–3515

    PubMed  Google Scholar 

  • Tanaka K, Kusano S, Fujita N, Ishihama A, Takahashi H (1995) Promoter determinants forEscherichia coli RNA polymerase holoenzyme containing σ38 (therpoS gene product). Nucleic Acids Res 23:827–834

    PubMed  Google Scholar 

  • Valone SE, Chikami GK, Miller V (1993) Stress induction of the virulence proteins (SpvA, -B, and -C) from native plasmid pSDL2 ofSalmonella dublin. Infect Immun 61:705–713

    PubMed  Google Scholar 

  • Yamashino T, Ueguchi C, Mizuno T (1995) Quantitative control of the stationary phase-specific sigma factor, σs, inEscherichia coli: involvement of the nucleoid protein H-NS. EMBO J 14:594–602

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowarz, L., Robbe-Saule, V. & Norel, F. Identification of cis-acting DNA sequences involved in the transcription of the virulence regulatory genespvR inSalmonella typhimurium . Molec. Gen. Genet. 251, 225–235 (1996). https://doi.org/10.1007/BF02172922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172922

Key words

Navigation