Skip to main content
Log in

The neurosecretory system of the octopus vena cava: A neurohemal organ

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Endings of about two million small neurones form a voluminous neuropil inside the vena cava of cephalopods, in direct contact with the blood. These nerve endings are filled with masses of typical neurosecretory granules. By immunocytochemistry we could distinguish three different populations of secretory endings in the vena cava neuropil ofOctopus vulgaris: 1) a population of endings which were immunoreactive with antibodies against the pentapeptide proctolin; 2) a population with oxytocin/vasopressin- and neurophysin-like immunoreactivity; 3) a population immunoreactive with antibodies which were raised against the molluscan cardioexcitatory peptide Phe-Met-Arg-Phe-amide, against α-melanotropin, and against atriopeptin. Extracts of the octopus vena cava stimulated amplitude and frequency of the isolated octopus heart preparation. Similar effects were exerted by peptides with the C-terminal structure-Arg-Phe-amide. Recently, we could isolate and identify in vena cava extracts four peptides; Phe-Met-Arg-Phe-amide, Phe-Leu-Arg-Phe-amide, Ala-Phe-Leu-Arg-Phe-amide and Thr-Phe-Leu-Arg-Phe-amide. Other peptides have not yet been identified. The fact that the peptides against which the immunoreactive antibodies were raised affected, in different organisms, blood volume, blood pressure, renal function and heart contraction suggests that one of the main functions of the neurosecretory system of the vena cava is a hormonal control of circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, M.E., and O'Shea, M., Peptide cotransmitter at a neuromuscular junction. Science221 (1983) 286–289.

    Article  CAS  PubMed  Google Scholar 

  2. Alexandrowicz, J.S., The neurosecretory system of the vena cava in cephalopoda. 1.Eledone cirrhosa. J. mar. biol. Ass. U.K.44 (1964) 111–132.

    Article  Google Scholar 

  3. Alexandrowicz, J.S., The neurosecretory system of the vena cava in cephalopoda. 2.Sepia officinalis andOctopus vulgaris. J. mar. biol. Ass. U.K.45 (1965) 209–228.

    Article  Google Scholar 

  4. Berry, C.F., and Cottrell, G.A., Neurosecretion in the vena cava of the cephalopodEledone cirrhosa. Z. Zellforsch.104 (1970) 107–115.

    Article  CAS  PubMed  Google Scholar 

  5. Blanchi, D., Noviello, L., and Libonati, M., A neurohormone of cephalopods with cardioexcitatory activity. Gen. comp. Endocr.21 (1973) 267–277.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, B.E., and Starratt, A.N., Isolation of proctolin, a myotropic peptide fromPeriplaneta americana. J. Insect Physiol.21 (1975) 1879–1881.

    Article  CAS  Google Scholar 

  7. Ebberink, R.H.M., Price, D.A., van Loenhout, H., Doble, K.E., Reihm, J.P., Geraerts, W.P.M., and Greenberg, M.J., The brain ofLymnaea contains a family of FMRFamide-like peptides. Peptides (1987) in press.

  8. Eckert, M., Agricola, H., and Penzlin, H., Immunocytochemical identification of proctolin-like immunoreactivity in the terminal ganglion and hindgut of the cockroachPeriplaneta americana (L.). Cell Tissue Res.217 (1981) 633–645.

    Article  CAS  PubMed  Google Scholar 

  9. Frösch, D., and Mangold, K., On the structure and function of a neurohemal organ in the eye cavity ofEledone cirrhosa (Cephalopoda). Brain Res.111 (1976) 287–293.

    Article  Google Scholar 

  10. Greenberg, M.J., and Price, D.A., Invertebrate neuropeptides: native and naturalized. A. Rev. Physiol.45 (1983) 271–288.

    Article  CAS  Google Scholar 

  11. Lang, R.E., Thölken, H., Ganten, D., Luft, F.C., Ruskoaho, H., and Unger, T., Atrial natriuretic factor — a circulating hormone stimulated by volume loading. Nature314 (1985) 264–266.

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann, H.K., Price, D.A., and Greenberg, M.J., The FMRF amide-like neuropeptide ofAplysia is FMRF amide. Biol. Bull167 (1984) 460–466.

    Article  Google Scholar 

  13. Manning, P.T., Schwartz, D., Katusbe, N.C., Holmberg, S.W., and Needleman, P., Vasopressin-stimulated release of atriopeptin: Endocrine antagonists in fluid homeostasis. Science229 (1985) 395–397.

    Article  CAS  PubMed  Google Scholar 

  14. Martin, R., Evidence for a secretory phenomenon in the brain ofIllex andOmmatostrephes (Cephalopoda Architeuthacea). Z. Zellforsch.73 (1966) 326–334.

    Article  CAS  PubMed  Google Scholar 

  15. Martin, R., Fine structure of the neurosecretory system of the vena cava in Octopus. Brain Res.8 (1968) 201–205.

    Article  CAS  PubMed  Google Scholar 

  16. Martin, R., Frösch, D., Kiehling, C., and Voigt, K.H., Molluscan neuropeptide-like and enkephalin-like material coexists in octopus nerves. Neuropeptides2 (1981) 141–150.

    Article  CAS  Google Scholar 

  17. Martin, R., Frösch, D., and Voigt, K.H., Immunocytochemical evidence for melanotropin- and vasopressin-like material in a cephalopod neurohemal organ. Gen. comp. Endocr.42 (1980) 235–243.

    Article  CAS  PubMed  Google Scholar 

  18. Martin, R., Haas, C., and Voigt, K.H., Opioid and related neuropeptides in molluscan neurons, in: Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, vol. 1, pp. 49–64. Ed. G. Stefano. CRC Press, Boca Raton 1986.

    Google Scholar 

  19. Oray, B., Lu, H.S., and Gracy, R.W., High performance liquid chromatographic separation of Dns-amino acid derivatives and applications to peptide and protein structural studies. J. Chromat.270 (1983) 253–266.

    Article  CAS  Google Scholar 

  20. O'Shea, M., Witten, J., and Schaffer, M. Isolation and characterization of two myoactive neuropeptides: Further evidence of an invertebrate peptide family. J. Neurosci.4 (1984) 521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Price, D.A., The distribution of FMRFamide peptides among molluscan species, in: Molluscan Neurobiology. Eds H.H. Boer, W.P.M. Geraerts and J. Joosse. North Holland, Amsterdam (1987) in press.

    Google Scholar 

  22. Price, D.A., Cottrell, G.A., Doble, M.J., Greenberg, M.J., Jorenby, W., Lehman, H.K., and Riehm, J.P., A novel FMRFamide-related peptide in Helix: pQDPFLRFamide. Biol. Bull.169 (1985) 256–266.

    Article  CAS  Google Scholar 

  23. Price, D.A., and Greenberg, M.J., Structure of a molluscan cardioexcitatory neuropeptide. Science197 (1977) 670–671.

    Article  CAS  PubMed  Google Scholar 

  24. Schaefer, M., Picciotto, M.R., Kreiner, T., Kaldany, R.R., Taussig, R., and Scheller, R.H.,Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides. Cell41 (1985) 457–467.

    Article  CAS  PubMed  Google Scholar 

  25. Scheller, R.H., and Kirk, M.D., Neuropeptides in identified Aplysia neurons: precursor structure, biosynthesis and physiological actions. Trends Neurosci.10 (1987) 46–52.

    Article  CAS  Google Scholar 

  26. Standaert, D.G., Saper, C.B., and Needleman, P., Atriopeptin: potent hormone and potential neuromediator. Trends Neurosci.8 (1985) 509–511.

    Article  CAS  Google Scholar 

  27. Stangier, J., Dircksen, H., and Keller, R., Identification and immunocytochemical localization of proctolin in pericardial organs of the shore crab,Carcinus maenas. Peptides7 (1986) 67–72.

    Article  CAS  PubMed  Google Scholar 

  28. Tatemoto, K., and Mutt, V., Chemical determination of polypeptide hormones. Proc. natn. Acad. Sci. USA75 (1978) 4115–4119.

    Article  CAS  Google Scholar 

  29. Umagat, H., Kucera, P., and Wen, L.F., Total amino acid analysis using pre-column fluorescence derivatisations. J. Chromat.239 (1982) 463–474.

    Article  CAS  Google Scholar 

  30. Voigt, K.H., Hirt, R., Kiehling, C., and Martin, R., Isolation and characterization of neuropeptides fromOctopus vulgaris, in: Molluscan Neurobiology. Eds H.H. Boer, W.P.M. Geraerts and J. Joosse. North Holland, Amsterdam (1987) in press.

    Google Scholar 

  31. Voigt, K.H., Kiehling, C., Frösch, D., Schiebe, M., and Martin, R., Enkephalin-related peptides: direct action on the octopus heart. Neurosci. Lett.27 (1981) 25–30.

    Article  CAS  PubMed  Google Scholar 

  32. Voigt, K.H., and Martin, R., Neuropeptides with cardioexcitatory and opioid activity in octopus nerves, in: Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, vol. 1, pp. 127–138. Ed. G. Stefano. CRC Press, Boca Raton 1986.

    Google Scholar 

  33. Walther, C., Schiebe, M., and Voigt, K.H., Synaptic and non-synaptic effects of molluscan cardioexcitatory neuropeptides on locust skeletal muscle. Neurosci. Lett.45 (1984) 99–104.

    Article  CAS  PubMed  Google Scholar 

  34. Wells, M.J., Hormones and the circulation in octopus, in: Molluscan Neuroendocrinology, pp. 221–228. Eds J. Lever and H.H. Boer. North Holland, Amsterdam 1983.

    Google Scholar 

  35. Young, J.Z., The anatomy of the nervous system ofOctopus vulgaris, pp. 603–620. Oxford 1971.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R., Voigt, K.H. The neurosecretory system of the octopus vena cava: A neurohemal organ. Experientia 43, 537–543 (1987). https://doi.org/10.1007/BF02143582

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143582

Key words

Navigation