Skip to main content
Log in

Approximating dominant singular triplets of large sparse matrices via modified moments

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A procedure for determining a few of the largest singular values and corresponding singular vectors of large sparse matrices is presented. Equivalent eigensystems are solved using a technique originally proposed by Golub and Kent based on the computation of modified moments. The asynchronicity in the computations of moments and eigenvalues makes this method attractive for parallel implementations on a network of workstations. Although no obvious relationship between modified moments and the corresponding eigenvectors is known to exist, a scheme to approximate both eigenvalues and eigenvectors (and subsequently singular values and singular vectors) has been produced. This scheme exploits both modified moments in conjunction with the Chebyshev semi-iterative method and deflation techniques to produce approximate eigenpairs of the equivalent sparse eigensystems. The performance of an ANSI-C implementation of this scheme on a network of UNIX workstations and a 256-processor Cray T3D is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Barrett et al.,Templastes for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, Philadelphia, 1994).

    Google Scholar 

  2. M. Berry and G. Golub, Estimating the largest singular values of large sparse matrices via modified moments. Numerical Algorithms 1 (1991) 353–374.

    Google Scholar 

  3. M. W. Berry, Large scale singular value computations, International Journal of Supercomputer Applications 6 (1992) 13–49.

    Google Scholar 

  4. M. W. Berry, S. T. Dumais and G. W. O'Brien, Using linear algebra for intelligent information retrieval, SIAM Review 37 (1995) 573–595.

    Google Scholar 

  5. C. Brezinski,Padé-type Approximation and General Orthogonal Polynomials (Birkhäuser, 1980).

  6. Inc. Cray Research,UNICOS C Library Reference Manual (Cray Research, Inc., Eagan, MN, 5.0 ed., 1994).

    Google Scholar 

  7. J. Dongarra, J. Bunch, C. Moler and G. W. Stewart,Linpack Users' Guide (SIAM, Philadelphia, 1979).

    Google Scholar 

  8. W. Gautschi, On generating orthogonal polynomials, SIAM Journal of Statistical and Scientific Computing 3 (1982) 289–317.

    Google Scholar 

  9. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam,PVM: Parallel Virtual Machine (MIT Press, Cambridge, MA, 1994).

    Google Scholar 

  10. G. Golub and M. D. Kent, Estimating eigenvalues for iterative methods, Mathematics of Computation 53 (1989) 619–626.

    Google Scholar 

  11. G. Golub and C. Van Loan,Matrix Computations (Johns Hopkins University Press, Baltimore, 2nd ed., 1989).

    Google Scholar 

  12. G. Golub, F. T. Luk and M. L. Overton, A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix, ACM Transactions on Mathematical Software 7 (1981) 149–169.

    Google Scholar 

  13. G. Golub and R. S. Varga, Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods, Numerische Mathematik 3 (1961) 147–156.

    Google Scholar 

  14. G. H. Golub, Some uses of the Lanczos algorithm in numerical linear algebra, in:Topics in Numerical Analysis, ed. J. Miller (1974).

  15. A. S. Householder,The Theory of Matrices in Numerical Analysis (Blaisdell, New York, 1964).

    Google Scholar 

  16. C. Lanczos, An iteration method for the solution of the eigenvalue problem, J. Res. Nat. Bur. Standards 45 (1950) 255–282.

    Google Scholar 

  17. R. B. Lehoucq, D. C. Sorensen and P. Vu, ARPACK: An implementation of the Implicitly Restarted Arnoldi Iteration that computes some of the eigenvalues and eigenvectors of a large sparse matrix (1994); available from netlib@ornl.gov under the directory Scalapack.

  18. C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM Journal of Numerical Analysis 12 (1975), 617–629.

    Google Scholar 

  19. B. N. Parlett,The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).

    Google Scholar 

  20. Y. Saad,Numerical Methods for Large Eigenvalue Problems (Manchester University Press, Manchester, UK, 1992).

    Google Scholar 

  21. G. W. StewartIntroduction to Matrix Computations (Academic Press, New York, 1973).

    Google Scholar 

  22. S. Varadhan, Estimating the largest singular values/vectors of large sparse matrices via modified moments, Technical Report CS-96-319, University of Tennessee, Knoxville, TN (February 1996).

    Google Scholar 

  23. R. S. Varga,Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

This research was supported in part by the National Science Foundation under grant numbers NSF-ASC-92-03004 and NSF-ASC-94-11394.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varadhan, S., Berry, M.W. & Golub, G.H. Approximating dominant singular triplets of large sparse matrices via modified moments. Numer Algor 13, 123–152 (1996). https://doi.org/10.1007/BF02143130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143130

Keywords

AMS subject classification

Navigation