Skip to main content
Log in

A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Bank and T.F. Chan, A composite step bi-conjugate gradient algorithm for solving non-symmetric systems, UCLA CAM Tech. Report 93-21 (1993), Number. Algor., this issue.

  2. R.E. Bank and T.F. Chan, An analysis of the composite step bi-conjugate gradient algorithm for solving nonsymmetric systems, UCLA CAM Tech. Report 92-53 (1992), Number. Math., to appear.

  3. C. Brezinski and H. Sadok, Lanczos-type algorithms for solving systems of linear equations, Appl. Numer. Math. 11 (1993) 443–473.

    Article  Google Scholar 

  4. C. Brezinski and H. Sadok, Avoiding breakdown in the CGS algorithm, Numer. Algor. 1 (1991) 199–206.

    Google Scholar 

  5. C. Brezinski and M. Redivo-Zaglia, Breakdowns in the computation of orthogonal polynomials, in:Nonlinear Numerical Methods and Rational Approximation, ed. A. Cuyt (Kluwer, Dordrecht), to appear.

  6. C. Brezinski and M. Redivo-Zaglia, Hybrid procedures for solving linear systems, Numer. Math. (1993), to appear.

  7. C. Brezinski and M. Redivo-Zaglia, Treatment of near-breakdown in the CGS algorithm, Numer. Algor., this issue.

  8. C. Brezinski, M. Redivo-Zaglia and H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math. 63 (1992) 29–38.

    Article  Google Scholar 

  9. C. Brezinski, M. Redivo-Zaglia and H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms, Numer. Algor. 1 (1991) 261–284.

    Google Scholar 

  10. T.F. Chan, L. de Pillis and H. van der Vorst, A transpose-free squared Lanczos algorithm and application to solving nonsymmetric linear systems, UCLA CAM Tech. Report 91-17 (1991).

  11. T.F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto and C. Tong, QMRCGSTAB: A quasiminimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, UCLA CAM Tech. Report 92-26 (1992), to appear in SIAM J. Sci. Stat. Comp.

  12. I.S. Duff, R.G. Grimes and J.G. Lewis, Sparse matrix test problems, ACM Trans. Math. Softw. 15 (1989) 1–14.

    Article  Google Scholar 

  13. R. Fletcher, Conjugate gradient methods for indefinite systems, in:Numerical Analysis, Lecture Notes in Matheamtics 506, ed. G.A. Watson (Springer, Berlin, 1976) pp. 73–89.

    Google Scholar 

  14. R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Stat. Comp. 14 (1993) 470–482.

    Article  Google Scholar 

  15. R.W. Freund and N.M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Mathematik 60 (1991) 315–339.

    Article  Google Scholar 

  16. R.W. Freund, M.H. Gutknecht and N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comp. 13 (1992) 137–158.

    Article  Google Scholar 

  17. R.W. Freund and T. Szeto, A Quasi-minimal residual squared algorithm for non-Hermitian linear systems, UCLA CAM Tech. Report 92-19 (1992), presented at theCopper Mountain Conf. on Iterative Methods (April 1992).

  18. M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM J. Matrix Anal. Appl. 13 (1992) 594–639.

    Article  Google Scholar 

  19. M.H. Gutknech, The unsymmetric Lanczos algorithms and their relations to Padé approximation, continued fraction and the QD algorithm, in:Proc. Copper Mt. Conf. on Iterative Methods (1990).

  20. M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand. 49 (1952) 409–436.

    Google Scholar 

  21. W. Joubert, Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations, Ph.D. Thesis, The University of Texas at Austin, Austin, TX (1990).

    Google Scholar 

  22. C. Lanczos, Solution of linear equations by minimized iterations, J. Res. Natl. Bur. Stand. 49 (1952) 33–53.

    Google Scholar 

  23. D.G. Luenberger, Hyperbolic pairs in the method of conjugate gradients, SIAM J. Appl. Math. 17 (1969) 1263–1267.

    Article  Google Scholar 

  24. N.M. Nachtigal, S.C. Reddy and L.N. Trefethen, How fast are nonsymmetric matrix iterations?, Tech. Report, MIT Dept. of Math., Cambridge, MA (1990).

    Google Scholar 

  25. B.N. Parlett, D.R. Taylor and Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp. 44 (1985) 105–124.

    Google Scholar 

  26. W. Schönauer,Scientific Computing on Vector Computers (North-Holland, Amsterdam/New York/Oxford/Tokyo, 1987).

    Google Scholar 

  27. P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 10 (1989) 36–52.

    Article  Google Scholar 

  28. H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 13 (1992) 631–644.

    Article  Google Scholar 

  29. H.A. Van der Vorst, The convergence behaviour of preconditioned CG and CG-S in the presence of rounding errors, in:Preconditioned Conjugate Gradient Method, eds. O. Axelsson and L. Yu. Kolotilina, Lecture Notes in Mathematics 1457 (Springer, Berlin, 1990).

    Google Scholar 

  30. R. Weiss, Convergence behavior of generalized conjugate gradient methos, Ph. D. thesis, University of Karlsruhe (1990).

  31. L. Zhou and H.F. Walker, Residual smoothing techniques for iterative methods, Tech. Rep., Dept. of Mathematics and Statistics, Utah State University (1992).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

Partially supported by the Office of Naval Research grant N00014-92-J-1890, the National Science Foundation grant ASC92-01266, and the Army Research Office grant DAAL03-91-G-150.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, T.F., Szeto, T. A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems. Numer Algor 7, 17–32 (1994). https://doi.org/10.1007/BF02141259

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02141259

Keywords

AMS(MOS) subject classification

Navigation