Skip to main content
Log in

Guided electromagnetic waves in anisotropic media

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

The propagation of guided waves in anisotropic media has recently become of interest in two fields, viz. in the interpretation of ferromagnetic resonance experiments and in the construction of microwave fourpoles which violate the reciprocity relation. In both cases we are faced with the solution of Maxwell's equations in a volume which is enclosed by perfectly conducting walls and which is completely or partially filled with a medium whose magnetic permeability is described by a second order tensor. An account is given here of some work, both theoretical and experimental, on this subject. Chapter I is an introduction, containing a short survey of the theory of guided waves in isotropic media and of the problems arising in anisotropic media, together with a historical synopsis. Chapter II gives a general formulation of the theory of guided waves in anisotropic media, comprising the existing theories, and also deals with some new applications. In Chapter III a cavity technique for measuring Faraday rotations is described which has several advantages over older techniques. In Chapter IV experimental results obtained for the series of Ferroxcubes IVA, B, C, D, E are collected. Chapter V finally deals with the physical interpretation of these results. In particular the experimental data are compared with Rado's theory of the permeability tensor in non-saturated ferromagnetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, P. J., Proc. Inst. Radio Engrs41 (1953) 100.

    Google Scholar 

  2. Beljers, H. G., Physica14 (1949) 629.

    Article  Google Scholar 

  3. Berk, A. D. and B. Lax, Quarterly Progress Report M.I.T. July 15, 1952.

  4. Berk, A. D. and B. Lax, Quarterly Progress Report M.I.T. Oct. 15, 1952.

  5. Birks, J. B., Proc. Phys. Soc. London B63 (1950) 65.

    Article  Google Scholar 

  6. Born, M., Optik, Berlin 1933.

  7. Gamo, H., J. Phys. Soc. Japan8 (1953) 176.

    Google Scholar 

  8. Goldstein, L., M. A. Lampert and J. F. Heney, Elect. Commun.28 (1951) 322.

    Google Scholar 

  9. Goldstein, L. and M. A. Lampert, Elect. Commun.30 (1953) 164.

    Google Scholar 

  10. Hafner, E., Arch. elektr. Übertragung7 (1953) 47.

    Google Scholar 

  11. Hogan, C. L., Bell Syst. Tech. J.31 (1952) 1.

    Google Scholar 

  12. Jahnke, E. and F. Emde, Tables of functions, Leipzig 1933.

  13. Kales, M. L., N.R.L. Report 4027, Aug. 8, 1952.

  14. Kennelly, A. E., Chart Atlas of Complex Hyperbolic and Circular Functions, 1914.

  15. Kittel, C., Phys. Rev.73 (1948) 155.

    Article  Google Scholar 

  16. Olin, I. D., Proc. Inst. Radio Engrs41 (1953) 10.

    Google Scholar 

  17. Polder, D., Phil. Mag.40 (1949) 100.

    Google Scholar 

  18. Polder, D., Proc. Instn. Elect. Engrs (London) II97 (1950) 246.

    Google Scholar 

  19. Rado, G. I., Phys. Rev.89 (1953) 529.

    Article  Google Scholar 

  20. Reggia, F. and R. W. Beatty, Proc. Inst. Radio Engrs41 (1953) 93.

    Google Scholar 

  21. Roberts, F. F., J. Phys. Radium12 (1952) 305.

    Google Scholar 

  22. Rybner, J., Nomograms of Complex Hyperbolic Functions, Copenhagen 1947.

  23. Sakiotis, N. G. and H. N. Chait, Proc. Inst. Radio Engrs41 (1953) 87.

    Google Scholar 

  24. Schelkunoff, S. A., Proc. Inst. Radio Engrs25 (1937) 1457.

    Google Scholar 

  25. Schelkunoff, S. A., Bell Syst. Tech. J.31 (1952) 784.

    Google Scholar 

  26. Slater, J. C., Microwave Electronies, New York 1950.

  27. Slater, J. C., Microwave Transmission, New York 1942.

  28. Smullin, L. D., Quarterly Progress Report M.I.T. July 15, 1952.

  29. Suhl, H. and L. R. Walker, Phys. Rev.86 (1952) 122.

    Article  Google Scholar 

  30. Tellegen, B. D. H., Philips Res. Rep.3 (1948) 81.

    Google Scholar 

  31. Trier, A. A. Th. M. van, Phys. Rev.87 (1952) 227.

    Google Scholar 

  32. Trier, A. A. Th. M. van, Appl. sci. Res. B3 (1953) 142.

    Google Scholar 

  33. Trier, A. A. Th. M. van, Tijdschr. Ned. Radiogen.18 (1953) 211.

    Google Scholar 

  34. Voigt, W., Magneto- und Elektrooptik, Leipzig 1908.

  35. Went, J. J. and E. W. Gorter, Philips Techn. Tijdschr.13 (1951) 213.

    Google Scholar 

  36. Wijn, H. P. J., thesis Leiden 1953.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Trier, A.A.T.M. Guided electromagnetic waves in anisotropic media. Appl. Sci. Res. 3, 305–371 (1954). https://doi.org/10.1007/BF02123913

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02123913

Keywords

Navigation