Skip to main content
Log in

Catecholamine metabolism in the vas deferens and the adrenal gland with special reference to the central catecholamine-depleted state

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Experiments were carried out to elucidate the role of central catecholamines in regulating catecholamine metabolism in the vas deferens and adrenal gland of the rat. Rats were injected intracerebroventricularly (i.c.v.) with either vehicle or 6-hydroxydopamine (6-OHDA). Groups of animals pretreated with vehicle or 6-OHDA (i.c.v.) were injected intraperitoneally (i.p.) with alpha-methyl-para-tyrosine (AMT), a tyrosine hydroxylase inhibitor. Catecholamine turnover rates were estimated by determining norepinephrine or epinephrine content after administrating AMT.

Central norepinephrine and dopamine contents decreased significantly (p<0.05) after treatment with 6-OHDA and AMT. The norepinephrine content of the vas deferens of rats pretreated with 6-OHDA was markedly reduced (p<0.001) after administration of AMT, whereas that of the vehicle-treated rats remained unchanged. Administration of 6-OHDA had no effect on the norepinephrine or epinephrine content of the adrenal gland.

The present results indicate that central monoaminergic neurons have an inhibitory effect on the adrenergic neurons of the vas deferens. In contrast, this inhibitory regulation does not appear to be exerted on the adrenal glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Sjöstrand, N. O., Acta physiol. scand.56 (1962) 376.

    Article  PubMed  Google Scholar 

  2. Furness, J. B., and Iwayama, T., J. Anat.113 (1972) 179.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Takamine, J, Am. J. Pharm.73 (1901) 523.

    CAS  Google Scholar 

  4. Euler, U. S., and Hamberg, U., Nature163 (1949) 642.

    Article  Google Scholar 

  5. Maas, J. W., Dekirmenjian, H., Garver D., Redmond, D. E. Jr., and Landis, D. H., Eur. J. Pharmac.,23 (1973) 121.

    Article  CAS  Google Scholar 

  6. Gauthier, P., and Reader, T. A., Can. J. Physiol. Pharmac.60 (1982) 1464.

    Article  CAS  Google Scholar 

  7. Edward, D. J., Ravitch, J., Knopf, S., and Sedlock, M. L., Biochem. Pharmac.34 (1985) 1255.

    Article  Google Scholar 

  8. Nakada, T., and Yamori, Y., Clin. exp. Hypert. A4 (1982) 477.

    CAS  Google Scholar 

  9. Benarroch, E. E., Balda, M. S., Finkielmann, S., and Nahmod, V. E., Neuropharmacology22 (1983) 29.

    Article  CAS  PubMed  Google Scholar 

  10. Wagner, J., Vitali, P., Palfreyman, M. G., Zraika, M., and Huot, S., Neurochemistry38 (1982) 1241.

    Article  CAS  Google Scholar 

  11. Nakada, T., Furuta, H., and Katayama, T., J. Urol.140 (1988) 1348.

    Article  CAS  PubMed  Google Scholar 

  12. Nakada, T., Sasagawa, I., Furuta, H., and Katayama, T., J. Urol.141 (1989) 998.

    Article  CAS  PubMed  Google Scholar 

  13. Brodie, B. B., Costa, E., Dlabac, A., Neff, N. H., and Smookler, H. H., J. Pharmac. exp. Ther.154 (1966) 493.

    CAS  Google Scholar 

  14. Miwa, S., Fujiwara, M., Inoue, M., and Fujiwara, M., J. Neurochem.47 (1986) 63.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, K., Miwa, S., Fujiwara, M., Magaribuchi, T., and Fujiwara, M., J. Pharmac. exp. Ther.240 (1987) 954.

    CAS  Google Scholar 

  16. Uretsky, N. J., and Iversen, L. L., J. Neurochem.17 (1970) 269.

    Article  CAS  PubMed  Google Scholar 

  17. Chalmers, J. P., and Reid J. L., Circ. Res.30 (1972) 789.

    Article  Google Scholar 

  18. Kostrzewa, R. M., and Jacobowitz, D. M., Pharmac. Rev.26 (1974) 199.

    CAS  Google Scholar 

  19. Sjöstrand, N. O., in: Smooth Muscle: An Assessment of Current Knowledge, chapt. 16 p. 367. Eds. E. Bülbring, A. F. Brading, A. W. Jones and T. Tomita. Edward Arnold Ltd, London 1981.

    Google Scholar 

  20. Westlund, K. N., Bowker, R. M., Ziegler, M. G., and Coulter, J. D., Neurosci. Lett.25 (1981) 243.

    Article  CAS  PubMed  Google Scholar 

  21. Westlund, K. N., Bowker, R. M., Ziegler, M. G., and Coulter, J. D., Brain les.263 (1983) 15.

    CAS  Google Scholar 

  22. Siroky, M. B., and Krane, R. J., in: Clinical Neuro-Urology. Little, Brown & Co., Boston, 1979.

    Google Scholar 

  23. Coupland, R. E., in: The Natural History of the Chromaffin Cell. Longmans, London 1965.

    Google Scholar 

  24. Yen, T. J., Kaiwa, T., and Wada, M., Tohoku J. exp. Med.17 (1931) 345.

    Article  CAS  Google Scholar 

  25. Luiten, P. G. M., and Ter Horst, G. J., in: Emotions: Neuronal and Chemical Control, p. 369. Ed. Y. Oomura. Japan Sci. Soc. Press, Tokyo 1986.

    Google Scholar 

  26. Weiner, R. I., and Ganong, W. F., Physiol. Rev.58 (1978) 905.

    Article  CAS  PubMed  Google Scholar 

  27. Axelrod, J., Rec. Prog. Horm. Res.21 (1965) 597.

    CAS  PubMed  Google Scholar 

  28. Quik, M., and Sourkes, T. L., J. Neurochem.28 (1977) 137.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, T., Nakada, T. Catecholamine metabolism in the vas deferens and the adrenal gland with special reference to the central catecholamine-depleted state. Experientia 48, 667–671 (1992). https://doi.org/10.1007/BF02118315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02118315

Key words

Navigation