Skip to main content
Log in

Phylogeny of the 5S ribosomal RNA fromSynechococcus lividus II: The cyanobacterial/chloroplast 5S RNAs form a common structural class

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The complete nucleotide sequence of the 5S ribosomal RNA from the cyanobacteriumSynechococcus lividus II has been determined. The sequence is 5′-UGCCUAGUGUUUAUGGCGCG-GUGGAACCACGCUGAUCCAUCCCGAACUC-AGAGGUGAAACAUCGCAGCGGUGAAGAU-AGUUGGAGGGUAGCCUCCUGCAAAAAUA-GCUCAAUGCUAGGCAOH-3′. This 5S RNA has the cyanobacterial- and chloroplast-specific nucleotide insertion between positions 30 and 31 (using the numbering system of the generalized eubacterial 5S RNA) and the chloroplast-specific nucleotide-deletion signature between positions 34 and 39. The 5S RNA ofS. lividus II has 27 base differences compared with the 5S RNA of the related strainS. lividus III. This large difference may reflect an ancient divergence between these two organisms. The electrophoretic mobilities on nondenaturing polyacrylamide gels of renatured 5S RNAs fromS. lividus II,S. lividus III, and spinach chloroplasts are identical, but differ considerably from that ofEscherichia coli 5S RNA. This most likely reflects differences in higher-order structure between the 5S RNA ofE. coli and these cyanobacterial and chloroplast 5S RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen J, Delihas N, Hanas JS, Wu C-W (1984) 5S RNA structure and interaction with transcription factor A. 1. Ribonuclease probe of the structure of the 5S RNA fromXenopus laevis oocytes. Biochemistry 23:5752–5759

    Article  PubMed  Google Scholar 

  • Bohm S, Fabian H, Welfle H (1981) Universal secondary structures of prokaryotic and eukaryotic ribosomal 5S RNA derived from comparative analysis of their sequences. Acta Biol Med Ger 40:k19-k24

    PubMed  Google Scholar 

  • Castenholz RW (1970) Laboratory culture of thermophilic cyanophytes. Schweiz Z Hydrol 32:538–551

    Google Scholar 

  • Delihas N, Andersen J (1982) Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Res 10:7323–7344

    PubMed  Google Scholar 

  • Delihas N, Andresini W, Andersen J, Berns D (1982) Structural features unique to the 5S ribosomal RNAs of the thermophilic cyanobacteriumSynechococcus lividus III and the green plant chloroplasts. J Mol Biol 162:721–727

    Article  PubMed  Google Scholar 

  • Delihas N, Andersen J, Singhal RP (1984) Structure, function and evolution of the 5S ribosomal RNAs. Prog Nucleic Acid Res Mol Biol 31:161–190

    PubMed  Google Scholar 

  • De Wachter R, Chen M, Vandenberghe A (1982) Conservation of secondary structure in 5S ribosomal RNA: A uniform model for eukaryotic, eubacterial and organelle sequences is energetically favourable. Biochimie 64:311–329

    PubMed  Google Scholar 

  • Donis-Keller H, Maxam AM, Gilbert W (1977) Mapping adenines, guanines and pyrimidines in RNA. Nucleic Acids Res 4:2527–2538

    PubMed  Google Scholar 

  • Douthwaite S, Garrett RA (1981) Secondary structure of prokaryotic 5S ribosomal ribonucleic acids: a study with ribonucleases. Biochemistry 20:7301–7307

    Article  PubMed  Google Scholar 

  • Dyer DL, Gafford RD (1961) Some characteristics of a thermophilic blue-green alga. Science 134:616–617

    PubMed  Google Scholar 

  • England TE, Uhlenbeck OC (1978) 3′-Terminal labelling of RNA with T4 RNA ligase. Nature 275:560–561

    Article  PubMed  Google Scholar 

  • Erdmann VA, Wolters J, Huysmans E, Vandenberghe A, De Wachter R (1984) Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res 12:r133-r166

    PubMed  Google Scholar 

  • Fox GE, Woese CR (1975) 5S RNA secondary structure. Nature 256:505–507

    Article  PubMed  Google Scholar 

  • Hinnebusch AG, Klotz LC, Blanken RL, Loeblich AR (1981) An evaluation of the phylogenetic position of the dinoflagellateCrypthecodinium cohnii based on 5S rRNA characterization. J Mol Evol 17:334–347

    Article  PubMed  Google Scholar 

  • Hori H, Osawa S (1979) Evolutionary changes in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proc Natl Acad Sci USA 76:381–385

    PubMed  Google Scholar 

  • Hori H, Sawada M, Osawa S, Murao K, Ishikura H (1981) The nucleotide sequence of 5S RNA fromMycoplasma capricolum. Nucleic Acids Res 9:5407–5410

    PubMed  Google Scholar 

  • Huysmans E, Dams E, Vandenberghe A, De Wachter R (1983) The nucleotide sequences of the 5S rRNAs of four mushrooms and their use in studying the phylogenetic position of Basidiomycetes among the eukaryotes. Nucleic Acids Res 11:2871–2880

    PubMed  Google Scholar 

  • Kuntzel H, Heidrich M, Piechulla B (1981) Phylogenetic tree derived from bacterial, cytosol and organelle 5S rRNA sequences. Nucleic Acids Res 9:1451–1461

    PubMed  Google Scholar 

  • Kuntzel H, Piechulla B, Hahn U (1983) Consensus structure and evolution of 5S rRNA. Nucleic Acids Res 11:893–900

    PubMed  Google Scholar 

  • Marotta CA, Varricchio F, Smith I, Weissman SM, Sogin ML, Pace NR (1976) The primary structure ofBacillus subtilis andBacillus stearothermophilus 5S ribonucleic acids. J Biol Chem 251:3122–3127

    PubMed  Google Scholar 

  • Nishikawa K, Takemura S (1974) Structure and function of 5S ribosomal ribonucleic acid fromTorulopsis utilis. J Biochem (Tokyo) 76:935–947

    Google Scholar 

  • Peary JA, Castenholz RW (1964) Temperature strains of a thermophilic blue-green alga. Nature 202:720–721

    Google Scholar 

  • Phillips GP, Timko JL (1972) Simple method for the characterization of 5S RNA. Anal Biochem 45:319–325

    Article  PubMed  Google Scholar 

  • Pieler T, Erdmann VA (1982) Three-dimensional structural model of eubacterial 5S RNA that has functional implications. Proc Natl Acad Sci USA 79:4599–4603

    PubMed  Google Scholar 

  • Pieler T, Digweed M, Bartsch M, Erdmann VA (1983) Comparative structural analysis of cytoplasmic and chloroplastic 5S rRNA from spinach. Nucleic Acids Res 11:591–604

    PubMed  Google Scholar 

  • Raue HA, Stoof TJ, Planta RJ (1975) Nucleotide sequence of 5S RNA fromBacillus licheniformis. Eur J Biochem 59:35–42

    Article  PubMed  Google Scholar 

  • Richards EG, Lecanidou R, Geroch ME (1973) The kinetics of renaturation of 5S RNA fromEscherichia coli in the presence of Mg2++ ions. Eur J Biochem 34:262–267

    Article  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sankoff D, Cedergren RJ, McKay W (1982) A strategy for sequence phylogeny research. Nucleic Acids Res 10:421–431

    PubMed  Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, eukaryotes, mitochondria and chloroplasts. Science 199:395–403

    PubMed  Google Scholar 

  • Stahl DA, Luehrsen KR, Woese C, Pace NR (1981) An unusual 5S rRNA fromSulfolobus acidocaldarius, and its implications for a general 5S rRNA structure. Nucleic Acids Res 9:6129–6137

    PubMed  Google Scholar 

  • Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:407–411

    Google Scholar 

  • Woese CR, Luehrsen KR, Pribula CD, Fox GE (1976) Sequence characterization of 5S ribosomal RNA from eight Gram positive prokaryotes. J Mol Evol 8:143–153

    Article  PubMed  Google Scholar 

  • Yamano Y, Ohyama K, Komano T (1984) Nucleotide sequences of chloroplast 5S ribosomal RNA from cell suspension cultures of the liverwortsMarchantia polymorpha andJungermannia subulata. Nucleic Acids Res 12:4621–4624

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delihas, N., Andersen, J. & Berns, D. Phylogeny of the 5S ribosomal RNA fromSynechococcus lividus II: The cyanobacterial/chloroplast 5S RNAs form a common structural class. J Mol Evol 21, 334–337 (1985). https://doi.org/10.1007/BF02115651

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02115651

Key words

Navigation