Skip to main content
Log in

Morse theory and Lyusternik-Shnirelman theory in geometric control theory

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Questions, related to the application of the ideas of global analysis to optimal control problems, are considered. A theory of Lyusternik-Shnirelman type is constructed for Hilbert manifolds with singularities, the so-called transversally convex subsets. Conditions for the nondegeneracy of the critical points (the extremal controls) are established in the optimal control problem, related to a smooth control system of constant rank, and a formula for their Morse index is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev, “A necessary condition for second order optimality in the general nonlinear case,” Mat. Sb.,102 (144), No. 4, 551–568 (1977).

    Google Scholar 

  2. A. A. Agrachev, “Homology of the intersections of real quadrics,” Dokl. Akad. Nauk SSSR,229, No. 5, 1033–1036 (1988).

    Google Scholar 

  3. A. A. Agrachev, “The topology of quadratic mappings and Hessians of smooth mappings,” Itogi Nauki i Tekhniki, Ser. Alg. Topol. Geom.,26, 85–124 (1988).

    Google Scholar 

  4. A. A. Agrachev, “Quadratic mappings in geometric control theory,” Itogi Nauki i Tekhniki, Ser. Probl. Geom.,20, 111–205 (1988).

    Google Scholar 

  5. A. A. Agrachev and S. A. Vakhrameev, “Chronological series and the Cauchy-Kovalevskaya theorem,” Itogi Nauki i Tekhniki, Ser. Probl. Geom.,12, 165–189 (1981).

    Google Scholar 

  6. A. A. Agrachev and S. A. Vakhrameev, “Nonlinear control systems of constant rank and bang-bang conditions for extremal controls,” Dokl. Akad. Nauk SSSR,279, No. 2, 265–269 (1984).

    Google Scholar 

  7. A. A. Agrachev and S. A. Vakhrameev, “Systems linear with respect to the control, of constant rank and bang-bang conditions for extremal controls,” Usp. Mat. Nauk,41, No. 6, 163–164 (1986).

    Google Scholar 

  8. A. A. Agrachev and S. A. Vakhrameev, “Morse theory in problems of optimal control and mathematical programming,” in: Int. Soviet-Polish Seminar “Mathematical Methods of Optimal Control and Their Applications” (Minsk, May 16–19, 1989). Abstracts of Reports [in Russian], Minsk (1989), pp. 7–8.

  9. A. A. Agrachev, S. A. Vakhrameev, and R. V. Gamkrelidze, “Differential geometric and group theoretic methods in optimal control theory,” Itogi Nauki i Tekhniki, Ser. Probl. Geom.,14, 3–56 (1983).

    Google Scholar 

  10. A. A. Agrachev and R. V. Gamkrelidze, “The principle of second order optimality for time-optimal problems,” Mat. Sb.,100 (142), No. 4, 610–643 (1976).

    Google Scholar 

  11. A. A. Agrachev and R. V. Gamkrelidze, “Exponential representation of flows and chronological calculus,” Mat. Sb.,107 (149), No. 4, 467–532 (1978).

    Google Scholar 

  12. A. A. Agrachev and R. V. Gamkrelidze, “Chronological algebras and nonstationary vector fields,” Itogi Nauki i Tekhniki, Ser. Probl. Geom.,11, 135–176 (1980).

    Google Scholar 

  13. A. A. Agrachev and R. V. Gamkrelidze, “The index of extremality and quasiextremal controls,” Dokl. Akad. Nauk SSSR,284, No. 4, 777–781 (1985).

    Google Scholar 

  14. A. A. Agrachev and R. V. Gamkrelidze, The Morse index and the Maslov index for the extremals of control systems,” Dokl. Akad. Nauk SSSR,287, No. 3, 521–524 (1986).

    Google Scholar 

  15. A. A. Agrachev and R. V. Gamkrelidze, “Calculation of the Euler characteristic of the intersections of real quadrics,” Dokl. Akad. Nauk SSSR,299, No. 1, 11–14 (1988).

    Google Scholar 

  16. A. A. Agrachev and R. V. Gamkrelidze, “Quasiextremality for controllable systems,” Itogi Nauki i Tekhniki, Ser. Sovr. Probl. Mat. Noveish. Dostizh.,35, 109–134 (1989).

    Google Scholar 

  17. A. A. Agrachev and R. V. Gamkrelidze, “Quadratic mappings and smooth vector functions: Euler characteristics of level sets,” Itogi Nauki i Tekhniki, Ser. Sovr. Probl. Mat. Noveish. Dostizh.,35, 179–239 (1989).

    Google Scholar 

  18. A. A. Agrachev and R. V. Gamkrelidze, “The ‘time substitution’ variation in optimal control,” Dokl. Akad. Nauk SSSR,311, No. 2, 265–270 (1990).

    Google Scholar 

  19. A. A. Agrachev and A. V. Sarychev, “Local invariants of smooth control systems,” VINITI AN and GKNT SSSR, Moscow (1986). (Manuscript deposited at VINITI, October 4, 1986, No. 7020-B.)

    Google Scholar 

  20. A. A. Agrachev and A. V. Sarychev, “On the reduction of a smooth system that is linear with respect to the control,” Mat. Sb.,130 (172), No. 1, 18–34 (1986).

    Google Scholar 

  21. A. A. Agrachev and A. V. Sarychev, “Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controllable systems,” Dokl. Akad. Nauk SSSR,295, No. 4, 777–781 (1987).

    Google Scholar 

  22. J. F. Adams, Infinite Loop Spaces, Princeton Univ. Press, Princeton (1978).

    Google Scholar 

  23. V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  24. Yu. N. Andreev, “Differential-geometric methods in control theory,” Avtomat. Telemekh., No. 10, 5–46 (1982).

    Google Scholar 

  25. V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Springer, New York (1978).

    Google Scholar 

  26. Kh. Asvad, “On the linear independence of Morse functions on manifolds,” Ukr. Mat. Zh.,42, No. 6, 835–838 (1990).

    Google Scholar 

  27. N. I. Akhiezer, The Calculus of Variations, Harwood Academic Publishers, Chur, Switzerland (1988).

    Google Scholar 

  28. G. A. Bliss, Lectures on the Calculus of Variations, Univ. Chicago Press, Chicago (1946).

    Google Scholar 

  29. N. A. Bobylev, A. M. Krasnosel'skii, M. A. Krasnosel'skii, and A. V. Pokrovskii, “On certain new ideas in nonlinear analysis,” Nelineinye Granichnye Zadachi (Kiev), No. 1, 22–26 (1989).

    Google Scholar 

  30. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer, New York (1982).

    Google Scholar 

  31. J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York (1972).

    Google Scholar 

  32. S. A. Vakhrameev, “Smooth controllable systems of constant rank and linearizable systems,” Itogi Nauki i Tekhniki, Ser. Sovr. Probl. Mat. Noveish. Dostizh.,35, 135–178 (1989).

    Google Scholar 

  33. S. A. Vakhrameev, “Palais-Smale theory for manifolds with corners. I. The case of finite dimension,” Usp. Mat. Nauk,45, No. 4, 141–142 (1990).

    Google Scholar 

  34. S. A. Vakhrameev, “Hilbert manifolds with angles of finite codimension, and optimal control theory,” Itogi Nauki i Tekhniki, Ser. Alg. Topol. Geom.,28, 96–171 (1990).

    Google Scholar 

  35. S. A. Vakhrameev, “A theorem on the Morse index of the extremals of some optimal control problems,” Dokl. Akad. Nauk SSSR,317, No. 1, 11–15 (1991).

    Google Scholar 

  36. S. A. Vakhrameev and A. V. Sarychev, “Geometry theory of control,” Itogi Nauki i Tekhniki, Ser. Alg. Topol. Geom.,23, 197–280 (1985).

    Google Scholar 

  37. R. Gabasov and F. M. Kirillova, Singular Optimal Controls [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  38. R. Gabasov and F. M. Kirillova, “Methods of optimal control,” Itogi Nauki i Tekhniki, Ser. Sovrem. Probl. Mat.,6, 133–261 (1976).

    Google Scholar 

  39. R. Gabasov and F. M. Kirillova, “Mathematical theory of optimal control,” Itogi Nauki i Tekhniki, Ser. Mat. Analiz,16, 55–97 (1979).

    Google Scholar 

  40. é. M. Galeev and V. M. Tikhomirov, A Short Course in the Theory of Extremal Problems [in Russian], Izd. Moskov. Gos. Univ., Moscow (1989).

    Google Scholar 

  41. R. V. Gamkrelidze, Foundations of Optimal Control [in Russian], Izd. Tbilisskogo Univ., Tbilisi (1977).

    Google Scholar 

  42. R. V. Gamkrelidze, A. A. Agrachev, and S. A. Vakhrameev, “Ordinary differential equations on vector bundles, and chronological calculus,” Itogi Nauki i Tekhniki, Ser. Sovr. Probl. Mat. Noveish. Dostizh.,35, 3–107 (1989).

    Google Scholar 

  43. I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems, Lecture Notes in Econom. and Math. Systems, No. 67, Springer, Berlin (1972).

    Google Scholar 

  44. R. Godement, “Topologie algébrique et théorie des faisceaux,” Actualités Sci. Ind., No. 1252, Publ. Math. Univ. Strasbourg, No. 13. Hermann, Paris (1958).

    Google Scholar 

  45. Yu. F. Golubev, and V. N. Demidov, “Qualitative analysis of the dynamics of control systems with the aid of the theory of infinite-dimensional manifolds,” in: Problems in the Qualitative Theory of Differential Equations (Irkutsk, 1986) [in Russian], Nauka, Novosibirsk (1988).

    Google Scholar 

  46. M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer, New York (1973).

    Google Scholar 

  47. P. A. Griffiths, Exterior Differential Systems and the Calculus of Variations, Birkhäuser, Boston (1983).

    Google Scholar 

  48. M. Gromov, Partial Differential Relations, Springer, Berlin (1986).

    Google Scholar 

  49. D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie in Grossen, Lecture Notes in Math., No. 55, Springer, Berlin (1968).

    Google Scholar 

  50. A. Dold, Lectures on Algebraic Topology, Springer, New York (1972).

    Google Scholar 

  51. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  52. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods of Homology Theory [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  53. H. Seifert and W. Threlfall, Variationsrechnung im Grossen (Theorie von Marston Morse), Chelsea, New York (1948).

    Google Scholar 

  54. M. I. Zelikin, “Necessary conditions for optimality of singular trajectories in problems that are linear with respect to control,” in: Some Problems in Modern Analysis [in Russian], Moskov. Gos. Univ., Mekh.-Mat. Fak., Moscow (1984), pp. 35–41.

    Google Scholar 

  55. J. Eells, “A setting for global analysis,” Bull. Amer. Math. Soc.,72, 751–807 (1966).

    Google Scholar 

  56. A. D. Ioffe and V. M. Tikhomirov, The Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  57. A. Kartan (H. Cartan), Differential Calculus. Differential Forms [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  58. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York (1983).

    Google Scholar 

  59. W. Klingenberg, Lectures on Closed Geodesics, Springer, Berlin (1978).

    Google Scholar 

  60. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I, II, Interscience, New York (1963, 1969).

    Google Scholar 

  61. A. Kosha (A. Kósa), “On the manifold of controllable processes in a nonlinear Lagrange problem,” Differents. Uravn.,24, No. 4, 566–570 (1988).

    Google Scholar 

  62. M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  63. Le Khon Van, “Jacobi equations on minimal homogeneous submanifolds in homogeneous Riemannian spaces,” Funkts. Anal. Prilozhen.,24, No. 2, 50–62 (1990).

    Google Scholar 

  64. S. Lang, Introduction to Differentiable Manifolds, Interscience (1962).

  65. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York (1967).

    Google Scholar 

  66. L. A. Lyusternik, “Topology and the calculus of variations,” Usp. Mat. Nauk,1, No. 1, 30–56 (1946).

    Google Scholar 

  67. L. A. Lyusternik, “Topology of functional spaces and calculus of variations in the large,” Trudy Mat. Inst. Akad. Nauk SSSR,19, (1947).

  68. L. A. Lyusternik and A. I. Fet, “Variational problems on closed manifolds,” Dokl. Akad. Nauk SSSR,81, No. 1, 17–18 (1951).

    Google Scholar 

  69. L. A. Lyusternik and L. G. Shnirel'man, Topological Methods in Variational Problems [in Russian], Gos. Izdat. Tekhn.-Teor. Liter., Moscow (1930).

    Google Scholar 

  70. L. A. Lyusternik and L. G. Shnirel'man, “Topological methods in variational problems and their application to the differential geometry of surfaces,” Usp. Mat. Nauk,2, No. 1, 166–217 (1947).

    Google Scholar 

  71. V. I. Matov, “The extremum functions of finite families of convex homogeneous functions,” Funkts. Anal. Prilozhen.,21, No. 1, 51–62 (1987).

    Google Scholar 

  72. J. Milnor, Morse Theory (based on lecture notes by M. Spivak and R. Wells), Princeton Univ. Press, Princeton (1963).

    Google Scholar 

  73. J. Milnor, Lectures on the h-Cobordism Theorem, Princeton Univ. Press, Princeton (1965).

    Google Scholar 

  74. B. Sh. Mordukhovich, Approximation Methods in Problems of Optimization and Control [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  75. K. Maurin, Methods of Hilbert Spaces, PWN Polish Scientific Publishers, Warszawa (1967).

    Google Scholar 

  76. L. Nirenberg, Topics in Nonlinear Functional Analysis, Lecture Notes, Courant Inst. of Math. Sciences, New York University, New York (1974).

    Google Scholar 

  77. Zh. P. Oben (J.-P. Aubin), Nonlinear Analysis and Its Economy Applications [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  78. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York (1984).

    Google Scholar 

  79. V. I. Arnol'd (ed.), Singularities of Differentiable Maps [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  80. L. S. Pontryagin, Smooth Manifolds and Their Applications in Homotopy Theory, Nauka, Moscow (1976).

    Google Scholar 

  81. L. S. Pontryagin, The Maximum Principle in Optimal Control [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  82. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, 3rd edition [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  83. M. M. Postnikov, The Variational Theory of Geodesics, Saunders, Philadelphia (1967).

    Google Scholar 

  84. M. M. Postnikov, Introduction to Morse Theory [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  85. M. M. Postnikov, Lectures in Algebraic Topology. Elements of Homotopy Theory [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  86. M. M. Postnikov, Smooth Manifolds. Lectures in Geometry. Semester III [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  87. M. M. Postnikov, Differential Geometry. Lectures in Geometry. Semester IV [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  88. B. N. Pshenichnyi, Necessary Conditions for an Extremum, Dekker, New York (1971).

    Google Scholar 

  89. B. N. Pshenichnyi, Convex Analysis and Extremal Problems [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  90. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton (1970).

    Google Scholar 

  91. V. A. Rokhlin and D. B. Fuks, A Beginning Course in Topology: Geometrical Chapters [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  92. W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).

    Google Scholar 

  93. A. V. Sarychev, “Stability of mappings of Hilbert space and the equivalence of control systems,” Mat. Sb.,113 (155), No. 1, 146–160 (1980).

    Google Scholar 

  94. A. V. Sarychev, “Index of second variation of a control system,” Mat. Sb.,113 (155), No. 3, 464–486 (1980).

    Google Scholar 

  95. A. V. Sarychev, “On the homotopic properties of the spaces of the trajectories of completely nonholonomic differential systems,” Dokl. Akad. Nauk SSSR,314, No. 6, 1336–1340 (1990).

    Google Scholar 

  96. J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York (1965).

    Google Scholar 

  97. I. V. Skrypnik, Nonlinear Higher Order Elliptic Equations [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  98. S. Smale, “Global analysis and economics. I. Pareto optimum and a generalization of Morse theory,” in: Dynamical Systems (Proc. Sympos., Univ. of Bahia, Salvador, 1971), Academic Press, New York (1973), pp. 531–544.

    Google Scholar 

  99. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York (1966).

    Google Scholar 

  100. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J. (1964).

    Google Scholar 

  101. S. A. Terziyan, “Saddle points and the solvability of semilinear equations,” in: Proc. 17th Spring Conf. of the Union of Bulgarian Mathematicians (Sunny Beach, April 6–9, 1988), Sofia (1988), pp. 195–199.

  102. S. A. Terziyan, “A variational approach to nonresonance problems for semilinear equations in a Hilbert space,” Differents. Uravn.,25, No. 8, 1344–1349 (1989).

    Google Scholar 

  103. A. I. Tret'yak, “On the necessary conditions for optimality of arbitrary order in the time-optimality problem,” Mat. Sb.,132 (174), No. 2, 261–274 (1987).

    Google Scholar 

  104. A. I. Tret'yak, “On necessary conditions for optimality of odd order in a time-optimality problem for systems that are linear with respect to control,” Mat. Sb.,181, No. 5, 625–641 (1990).

    Google Scholar 

  105. F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman, Glenview, Ill. (1971).

    Google Scholar 

  106. M. Sh. Farber, “Smooth sections of the intersection of multivalued mappings,” Izv. Akad. Nauk Azerbaidzhan. SSR, Ser. Fiz.-Tekhn. Mat. Nauk, No. 6, 23–28 (1979).

    Google Scholar 

  107. V. V. Fedorchuk and V. V. Filippov, General Topology. Basic Constructions [in Russian], Izd. Moskov. Univ., Moscow (1988).

    Google Scholar 

  108. A. I. Fet, “Variational problems on closed manifolds,” Mat. Sb.,30 (72), No. 2, 271–316 (1952).

    Google Scholar 

  109. A. I. Fet, “A connection between the topological properties and the number of extremals on a manifold,” Dokl. Akad. Nauk SSSR,88, No. 3, 415–417 (1953).

    Google Scholar 

  110. A. I. Fet, “A periodic problem in the calculus of variations,” Dokl. Akad. Nauk SSSR,160, No. 2, 287–289 (1965).

    Google Scholar 

  111. W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, Berlin (1975).

    Google Scholar 

  112. A. T. Fomenko, Differential Geometry and Topology, Consultants Bureau, New York (1987).

    Google Scholar 

  113. A. T. Fomenko and D. B. Fuks, A Course in Homotopic Topology [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  114. P. Hartman, Ordinary Differential Equations, Wiley, New York (1964).

    Google Scholar 

  115. M. W. Hirsch, Differential Topology, Springer, New York (1976).

    Google Scholar 

  116. S. T. Hu, Homotopy Theory, Academic Press, New York (1959).

    Google Scholar 

  117. J. T. Schwartz, Differential Geometry and Topology, Lecture Notes, Courant Inst. of Math. Sciences, New York University, New York (1966).

    Google Scholar 

  118. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam (1976).

    Google Scholar 

  119. L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia (1969).

    Google Scholar 

  120. R. Abraham and J. Robin, Transversal Mappings and Flows, Benjamin, New York (1967).

    Google Scholar 

  121. D. Aeyels, “Global controllability for smooth nonlinear systems: a geometric approach,” SIAM J. Control Optim.,23, No. 3, 452–465 (1985).

    Google Scholar 

  122. A. A. Agrachev and R. V. Gamkrelidze, “Symplectic geometry for optimal control,” in: Nonlinear Controllability and Optimal Control, H. J. Sussmann (ed.), Dekker, New York (1990), pp. 263–277.

    Google Scholar 

  123. A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, “Local invariants of smooth control systems,” Acta Appl. Math.,14, No. 3, 191–237 (1989).

    Google Scholar 

  124. A. A. Agrachev and A. V. Sarychev, “The control of rotation for asymmetric rigid body,” Problems Control Inform. Theory,12, No. 5, 335–347 (1983).

    Google Scholar 

  125. A. A. Agrachev and S. A. Vakhrameev, “Morse theory and optimal control problems,” in: Nonlinear Synthesis (Sopron, 1989), Progr. Systems Control Theory, No. 9, Birkhäuser Boston, Boston (1991), pp. 1–11.

    Google Scholar 

  126. M. K. Agoston, Algebraic Topology — A First Course, Dekker, New York (1976).

    Google Scholar 

  127. W. Ambrose, “The index theorem in Riemannian geometry,” Ann. Math.,73, No. 1, 49–86 (1961).

    Google Scholar 

  128. A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” J. Funct. Anal.,14, No. 4, 349–381 (1973).

    Google Scholar 

  129. H. Amann, “Lusternik-Schnirelman theory and non-linear eigenvalue problems,” Math. Ann.,199, 55–72 (1972).

    Google Scholar 

  130. H. Amann, “Saddle points and multiple solutions of differential equations,” Math. Z.,169, No. 2, 127–166 (1979).

    Google Scholar 

  131. M. F. Atiyah and R. Bott, “The Yang-Mills equations over Riemann surfaces,” Phil. Trans. R. Soc.,A308, 523–615 (1983).

    Google Scholar 

  132. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Springer, New York (1982).

    Google Scholar 

  133. A. Bahri, “Critical points at infinity in the variational calculus,” in: Partial Differential Equations (Rio de Janeiro, July 14–25, 1986), Lecture Notes in Math.,No. 1324, Springer, Berlin (1988), pp. 1–29.

    Google Scholar 

  134. A. Bahri and P. L. Lions, “Morse index of some min-max critical points. I. Application to multiplicity results,” Comm. Pure Appl. Math.,41, No. 8, 1027–1037 (1988).

    Google Scholar 

  135. D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Academic Press, London (1975).

    Google Scholar 

  136. V. Benci, “A new approach to the Morse-Conley theory,” in: Proc. Internat. Conf. on Recent Advances in Hamiltonian Systems (Univ. of L'Aquila, 10–13 June 1986), World Scientific, Singapore (1987), pp. 1–52.

    Google Scholar 

  137. V. Benci and P. H. Rabinowitz, “Critical point theorems for indefinite functionals,” Invent. Math.,52, 241–273 (1979).

    Google Scholar 

  138. M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York (1977).

    Google Scholar 

  139. F. Berquier, “Points focaux, problème de Bolza et contrÔle optimal,” C. R. Acad. Sci. Paris, Sér. I Math.,309, No. 10, 687–690 (1989).

    Google Scholar 

  140. L. D. Berkovitz, Optimal Control Theory, Springer, New York (1974).

    Google Scholar 

  141. C. Bessaga and A. Pelczyński, Selected Topics in Infinite-Dimensional Topology, PWN Polish Scientific Publishers, Warszawa (1975).

    Google Scholar 

  142. R. M. Bianchini and G. Stefani, “A high order maximum principle,” in: Anal. and Contr. Nonlinear Systems, Selected Papers, 8th Internat. Symp. Math. Networks and Systems, (Phoenix, June 15–19, 1987), Amsterdam (1988), pp. 131–136.

  143. G. D. Birkhoff, “Dynamical systems with two degrees of freedom,” Trans. Am. Math. Soc.,18, 199–300 (1917).

    Google Scholar 

  144. G. D. Birkhoff, “Stability and the equations of dynamics,” Am. J. Math.,49, 1–38 (1927).

    Google Scholar 

  145. G. D. Birkhoff and M. R. Hestenes, “Generalized minimax principle in the calculus of variations,” Duke Math. J.,1, 413–432 (1935).

    Google Scholar 

  146. J. Bolton, “The Morse index theorem in the case of two variable end-points,” J. Differential Geom.,12, 567–581 (1977).

    Google Scholar 

  147. B. Bonnard, “ContrÔle de l'attitude d'un satellite rigide,” in: Outils et Modèles Mathématiques pour l'Automatique, l'Analyse de Systèmes et le Traitement du Signal. Vol. 3, CNRS, Paris (1983), pp. 649–658.

    Google Scholar 

  148. J.-M. Bonnisseau and B. Cornet, “Fixed-point theorem and Morse's lemma for Lipschitzian functions,” J. Math. Anal. Appl.,146, No. 2, 318–332 (1990).

    Google Scholar 

  149. W. M. Boothby, “Some comments on global linearization of nonlinear systems,” Systems Control Lett.,4, No. 3, 143–147 (1984).

    Google Scholar 

  150. W. M. Boothby, “Global feedback linearizability of locally linearizable systems,” in: Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, Dordrecht (1986), pp. 243–256.

    Google Scholar 

  151. W. M. Boothby and W. P. Dayawansa, “Some global aspects of the feedback linearization problem,” in: Differential Geometry: the Interface between Pure and Applied Mathematics (San Antonio, Texas, 1986), Contemp. Math., No. 68, Amer. Math. Soc., Providence (1987), pp. 51–64.

    Google Scholar 

  152. R. Bott, “Nondegenerate critical manifolds,” Ann. Math.,60, No. 2, 248–261 (1954).

    Google Scholar 

  153. R. Bott, “On the iteration of closed geodesics and the Sturm intersection theory,” Comm. Pure Appl. Math.,9, 171–206 (1956).

    Google Scholar 

  154. R. Bott, “The stable homotopy of the classical groups,” Ann. Math.,70, No. 2, 313–337 (1959).

    Google Scholar 

  155. R. Bott, “Marston Morse and his mathematical works,” Bull. Am. Math. Soc.,3, No. 3, 907–950 (1980).

    Google Scholar 

  156. R. Bott, “Lectures on Morse theory, old and new,” Bull. Am. Math. Soc.,7, No. 2, 331–358 (1982).

    Google Scholar 

  157. R. Bott and H. Samelson, “Applications of the theory of Morse to symmetric spaces,” Amer. Math. J.,80, 964–1029 (1958).

    Google Scholar 

  158. M. L. Bougeard, “Morse theory for some lower-C2 functions in finite dimension,” Math. Programming,41, No. 2 (Ser, A), 141–159 (1988).

    Google Scholar 

  159. A. Bressan, “Dual variational methods in optimal control theory,” in: Nonlinear Controllability and Optimal Control, H. J. Sussmann (ed.), Dekker, New York (1990), pp. 219–235.

    Google Scholar 

  160. F. E. Browder, “On the spectral theory of elliptic differential operators. I,” Math. Ann.,142, 22–130 (1961).

    Google Scholar 

  161. F. E. Browder, “Functional analysis and partial differential equations. II,” Math. Ann.,145, 81–226 (1962).

    Google Scholar 

  162. C. I. Byrnes, “Toward a global theory of (f, g)-invariant distributions with singularities,” in: Mathematical Theory of Networks and Systems (Beer-Sheva, Israel, June 20–24, 1983), Lecture Notes in Control and Inform. Sci., No. 58, Springer, Berlin (1984), pp. 149–165.

    Google Scholar 

  163. C. I. Byrnes and A. J. Krener, “On the existence of globally (f, g)-invariant distributions,” in: Differential Geometric Control Theory (Houghton, Mich., 1982), Birkhäuser, Boston, Mass. (1983), pp. 209–225.

    Google Scholar 

  164. A. Canino, “On p-convex sets and geodesics,” J. Differential Equations,75, No. 1, 118–157 (1988).

    Google Scholar 

  165. A. Canino, “Existence of a closed geodesic on p-convex sets,” Ann. Inst. H. Poincaré Anal. Non Linéaire,5, No. 6, 501–518 (1988).

    Google Scholar 

  166. J. L. Casti, “Recent developments and future perspectives in nonlinear system theory,” SIAM Rev.,24, No. 3, 301–331 (1982).

    Google Scholar 

  167. J. L. Casti, “Recent developments and future perspectives in nonlinear system theory,” SIAM Rev.,24, No. 2, 301–331 (1982).

    Google Scholar 

  168. J. L. Casti, Nonlinear System Theory, Academic Press, Orlando (1985).

    Google Scholar 

  169. A. Castro and A. C. Lazer, “Critical point theory and the number of solutions of a nonlinear Dirichlet problem,” Ann. Mat. Pura Appl.,120, 113–137 (1979).

    Google Scholar 

  170. K.-C. Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations,” J. Math. Anal. Appl.,80, 102–129 (1981).

    Google Scholar 

  171. K. C. Chang, Infinite-Dimensional Morse Theory and Its Applications, Presses de l'Université de Montréal, Montreal (1985).

    Google Scholar 

  172. D. Cheng, T. J. Tarn, A. Isidory, “Global feedback linearization of nonlinear systems,” in: Proc. 23rd IEEE Conf. on Decision and Control (Las Vegas, NV, Dec. 12–14, 1984), Vol. 1, New York (1984), pp. 74–83.

  173. D. C. Clark, “A variant of the Lusternik-Schnirelman theory,” Indiana Univ. Math. J.,22, No. 1, 65–74 (1972).

    Google Scholar 

  174. J.-N. Corvellec, “Sur un principe général de type min-max en théorie des points critiques,” C. R. Acad. Sci. Paris, Sér. I Math.,311, No. 7, 443–446 (1990).

    Google Scholar 

  175. D. G. Costa, B. Alveste, and E. Silva, “The Palais-Smale conditions versus coercivity,” Notas Comun. Mat., No. 166, 1–15 (1989).

    Google Scholar 

  176. W. Dayawansa, D. L. Elliott, and W. M. Boothby, “Global linearization by feedback and state transformations,” in: Proc. 24th IEEE Conf. on Decision and Control (Fort Lauderdale, Florida, Dec. 11–13, 1985), Vol. 2, New York (1985), pp. 1042–1049.

    Google Scholar 

  177. W. Dayawansa, D. Elliott, and C. Martin, “Feedback transformations on tori,” Math. Systems Theory,22, No. 3, 213–219 (1989).

    Google Scholar 

  178. H. I. Eliasson, “Morse theory for closed curves,” in: Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, LA, 1967), Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton (1972), pp. 63–77.

    Google Scholar 

  179. I. Ekeland, “On the variational principle,” J. Math. Anal. Appl.,47, 324–353 (1974).

    Google Scholar 

  180. I. Ekeland, “On Hopf-Rinow theorem in infinite dimension,” J. Differential Geom.,13, 287–301 (1978).

    Google Scholar 

  181. A. Floer, “Morse theory for Lagrangian intersections,” J. Differential Geom.,28, No. 3, 513–547 (1988).

    Google Scholar 

  182. G. Fournier and M. Willem, “Relative category and calculus of variations,” Sem. Math., Inst. Math. Pure Appl., Univ. Cathol. Louvain, No. 1–2, 109–120 (1988–1989).

    Google Scholar 

  183. J. H. G. Fu, “Curvature measures and generalized Morse theory,” J. Differential Geom.,30, No. 3, 619–642 (1989).

    Google Scholar 

  184. S. Fučík and J. Nečas, “Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems,” Math. Nachr.,53, 277–289 (1972).

    Google Scholar 

  185. R. E. Gaines and J. K. Peterson, “Degree theoretic methods in optimal control,” J. Math. Anal. Appl.,94, No. 1, 44–77 (1983).

    Google Scholar 

  186. J.-P. Gauthier, Structure des Systèmes Non Linéaires, CNRS, Paris (1984).

    Google Scholar 

  187. M. Girardi and M. Matzeu, “Dual variational methods and Morse index for periodic solutions of Hamiltonian systems,” in: Proc. Internat. Conf. on Recent Advances in Hamiltonian Systems (Univ. of L'Aquila, 10–13 June 1986), World Scientific, Singapore (1987), pp. 169–176.

    Google Scholar 

  188. R. M. Goresky and R. MacPherson, Stratified Morse Theory, Springer, Berlin (1988).

    Google Scholar 

  189. D. Gromoll and W. Meyer, “On differentiable functions with isolated critical points,” Topology,8, 361–369 (1969).

    Google Scholar 

  190. D. Gromoll and W. Meyer, “Periodic geodesics on compact Riemannian manifolds,” J. Differential Geom.,3, 493–510 (1969).

    Google Scholar 

  191. K. Grove, “Condition (C) for the energy integral on certain path spaces and applications to the theory of geodesics,” J. Differential Geom.,8, 207–223 (1973).

    Google Scholar 

  192. H. A. Hamm, Morse theory on singular spaces and Lefschetz theorems,” in: Singularities (Warsaw, 1985), Banach Center Publ., Vol. 20, PWN, Warsaw (1988), pp. 223–237.

    Google Scholar 

  193. R. Hermann, “Pfaffian systems and feedback linearization: obstructions,” in: Proc. 22nd IEEE Conf. on Decision and Control (San Antonio, Texas, December 14–16, 1983), Vol. 1, New York (1983), pp. 119–121.

    Google Scholar 

  194. M. R. Hestenes, “Applications of the theory of quadratic forms in Hilbert space to the calculus of variations,” Pacific J. Math.,1, No. 4, 525–581 (1951).

    Google Scholar 

  195. M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York (1974).

    Google Scholar 

  196. R. M. Hirschorn, “Global controllability of nonlinear systems,” SIAM J. Control Optim.,14, No. 4, 700–711 (1976).

    Google Scholar 

  197. H. Hofer, “A note on the topological degree at a critical point of mountainpass-type,” Proc. Am. Math. Soc.,90, No. 2, 309–315 (1984).

    Google Scholar 

  198. H. Hofer, “A geometric description of the neighborhood of a critical point given by the mountain-pass theorem,” J. London Math. Soc.,31, 566–570 (1985).

    Google Scholar 

  199. H. Hofer, “A strong form of the mountain pass theorem and application,” in: Nonlinear Diffusion Equations and Their Equilibrium States, I (Berkeley, CA, 1986), Springer, New York (1988), pp. 341–350.

    Google Scholar 

  200. L. R. Hunt, R. Su, and G. Meyer, “Global transformations of nonlinear systems,” IEEE Trans. Automat. Control,AC-28, No. 1, 24–31 (1983).

    Google Scholar 

  201. K. Igusa, “C1 local parametrized Morse theory,” Topology Appl.,36, 209–231 (1990).

    Google Scholar 

  202. A. Isidori, Nonlinear Control Systems, Springer, Berlin (1989).

    Google Scholar 

  203. B. Jakubczyk and W. Respondek, “On linearization of control systems,” Bull. Acad. Polon. Sci. Sér. Sci. Math.,28, No. 9–10, 517–522 (1980).

    Google Scholar 

  204. H. Th. Jongen and D. Pallaschke, “On linearization and continuous selections of functions,” Optimization,19, No. 3, 343–353 (1988).

    Google Scholar 

  205. J. Jost, “A nonparametric proof of the theorem of Lusternik and Schnirelman,” Arch. Math. (Basel),53, No. 5, 497–509 (1989).

    Google Scholar 

  206. V. Jurdjevic and J. Kogan, “Optimality of extremals for linear systems with quadratic costs,” J. Math. Anal. Appl.,143, No. 1, 86–108 (1989).

    Google Scholar 

  207. D. Kalish, “The Morse index theorem where the ends are submanifolds,” Trans. Am. Math. Soc,308, No. 1, 341–348 (1988).

    Google Scholar 

  208. S.-K. Kim and T. Wang, “The generalized Morse lemma and the Euler characteristic of Banach manifolds,” Topology Appl.,32, No. 1, 13–23 (1989).

    Google Scholar 

  209. H. W. Knobloch, Higher order necessary conditions in optimal control theory,” in: Ordinary and Partial Differential Equations (Dundee, Scotland, March 29–31, 1978), Lecture Notes in Math., No. 827, Springer, Berlin (1980), pp. 151–164.

    Google Scholar 

  210. H. W. Knobloch, Higher Order Necessary Conditions in Optimal Control Theory, Lecture Notes in Control and Inform. Sci., No. 34, Springer, Berlin (1981).

    Google Scholar 

  211. J. Kogan, Bifurcation of Extremals in Optimal Control, Lecture Notes in Math., No. 1216, Springer, Berlin (1986).

    Google Scholar 

  212. J. Kogan, “Fields of extremals in linear-quadratic problems of optimal control,” in: Proc 27th IEEE Conf. on Decision and Control (Austin, Texas, December 7–9, 1988), Vol. 2, New York (1988), pp. 1173–1176.

    Google Scholar 

  213. A. Kósa, “On global optimization of control processes. System-theoretical aspects,” Z. Angew. Math. Mech.,63, No. 5, T412-T413 (1983).

    Google Scholar 

  214. A. J. Krener, “The high order maximal principle and its application to singular extremals,” SIAM J. Control Optim.,15, No. 2, 256–293 (1977).

    Google Scholar 

  215. N. H. Kuiper, “C1-equivalence of functions near isolated critical points,” in: Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967), Ann. Math. Studies, No. 69, Princeton Univ. Press, Princeton, N. J. (1972), pp. 199–218.

    Google Scholar 

  216. A. Kumpera, “Remarks on a paper by R. M. Hirschorn,” SIAM J. Control Optim.,26, No. 2, 465–467 (1989).

    Google Scholar 

  217. H. Kunita “On the controllability of nonlinear systems with applications to polynomial systems,” Appl. Math. Optim.,5, No. 2, 89–99 (1979).

    Google Scholar 

  218. I. Kupka, “Generic properties of extremals in optimal control problems,” in: Differential Geometric Control Theory (Houghton, Mich., 1982), Birkhäuser, Boston (1983).

    Google Scholar 

  219. F. Lamnabhi-Lagarrigue, “Sur les conditions nécéssaire d'optimalité du deuxième et troisième ordre dans les problèmes de commande optimale singulière,” in: Analysis and Optimization of Systems (Nice, June 19–22, 1984), Part 2, Lecture Notes in Control and Inform. Sci., No. 63, Springer, Berlin (1984), pp. 525–541.

    Google Scholar 

  220. S. Li and J. Q. Liu, “Morse theory and asymptotic linear Hamiltonian system,” J. Differential Equations,78, No. 1, 53–73 (1989).

    Google Scholar 

  221. Y.-C. Lu, Singularity Theory and an Introduction to Catastrophe Theory, Springer, New York (1976).

    Google Scholar 

  222. L. Lusternik and L. Schnirelmann, “Sur le problème de trois géodésiques fermées sur les surfaces de genre 0,” C. R. Acad. Sci. Paris,189, 269–271 (1929).

    Google Scholar 

  223. L. Lusternik and L. Schnirelmann, Méthodes Topologiques dans les Problèmes Variationnels, Hermann, Paris (1934).

    Google Scholar 

  224. R. Ma, “Variations of locally Lipschitz functions on Finsler manifolds,” Chongqing Univ.,13, No. 4, 122–126 (1990).

    Google Scholar 

  225. R. F. Manasevich, “A minimax theorem,” J. Math. Anal. Appl.,90, No. 1, 64–71 (1982).

    Google Scholar 

  226. A. Marino and G. Prodi, “La teoria di Morse per gli spazi di Hilbert,” Rend. Sem. Mat. Univ. Padova,64, 43–68 (1968).

    Google Scholar 

  227. A. Marino and G. Prodi, “Metodi perturbativi nella teoria di Morse,” Boll. Un. Mat. Ital. Ser. 4,11, Suppl. No. 3, 1–32 (1975).

    Google Scholar 

  228. A. Marino and D. Scolozzi, “Geodetiche con ostacolo,” Boll. Un. Mat. Ital., Ser. 6,2B, No. 1, 1–31 (1983).

    Google Scholar 

  229. R. Marino, W. M. Boothby, and D. L. Elliott, “Geometric properties of linearizable control systems,” Math. Systems Theory,18, No. 2, 97–123 (1985).

    Google Scholar 

  230. W. S. Massey, Algebraic Topology: An Introduction, Harcourt, Brace & World, New York (1967).

    Google Scholar 

  231. K. H. Mayer, “G-invariante Morse-Funktionen,” Manuscripta Math.,63, 99–114 (1989).

    Google Scholar 

  232. F. Mercuri, “The critical points theory for the closed geodesics problem,” Math. Z.,156, 231–245 (1977).

    Google Scholar 

  233. F. Mercuri and G. Palmieri, “Morse theory with low differentiability,” Boll. Un. Mat. Ital. Ser. 7,1B, No. 3, 621–631 (1987).

    Google Scholar 

  234. M. Morse, “The critical points of a function of n variables,” Trans. Am. Math. Soc.,33, 72–91 (1931).

    Google Scholar 

  235. M. Morse, “Generalized concavity theorems,” Proc. Nat. Acad. Sci. U.S.A.,21, 359–362 (1935).

    Google Scholar 

  236. M. Morse, “The index theorem in the calculus of variations,” Duke Math. J.,4, 231–246 (1938).

    Google Scholar 

  237. M. Morse, Functional topology and abstract variational theory. Mém. Sci. Math., No. 92, Gauthier-Villars, Paris (1939).

    Google Scholar 

  238. M. Morse, Introduction to Analysis in the Large, The Institute for Advanced Study, Princeton (1947).

    Google Scholar 

  239. M. Morse, The Calculus of Variations in the Large, Amer. Math. Soc., New York (1964).

    Google Scholar 

  240. M. Morse and S. S. Cairns, Critical Point Theory in Global Analysis and Differential Topology, Academic Press, New York (1969).

    Google Scholar 

  241. D. Motreanu, “Existence for minimization with nonconvex constraints,” J. Math. Anal. Appl.,117, No. 1, 128–137 (1986).

    Google Scholar 

  242. D. Motreanu, “Optimization problems on complete Riemannian manifolds,” Colloq. Math.,53, No. 2, 229–238 (1987).

    Google Scholar 

  243. D. Motreanu and N. H. Pavel, “Quasi-tangent vectors in flow-invariance and optimization problems on Banach manifolds,” J. Math. Anal. Appl.,88, 116–132 (1962).

    Google Scholar 

  244. J. Nash, “The imbedding problem for Riemannian manifolds,” Ann. Math.,63, No. 1, 20–63 (1956).

    Google Scholar 

  245. W.-M. Ni, “Some minimax principles and their applications to nonlinear elliptic equations,” J. Analyse Math.,37, 248–275 (1980).

    Google Scholar 

  246. L. Nirenberg, “Variational methods in nonlinear problems,” in: Topics in Calculus of Variations (Montecatini Terme, Italy, July 20–28, 1987), Lecture Notes in Math., No. 1365, Springer, Berlin (1989), pp. 100–119.

    Google Scholar 

  247. D. Orrell and V. Zeidan, “Another Jacobi sufficiency criterion for optimal control with smooth constraints,” J. Optim. Theory Appl.,58, No. 2, 283–300 (1988).

    Google Scholar 

  248. F. Pacella, “Morse theory and symmetry,” in: Proc. Internat. Conf. on Recent Advances in Hamiltonian Systems (Univ. of L'Aquila, 10–13 June 1986), World Scientific, Singapore (1987), pp. 53–74.

    Google Scholar 

  249. R. S. Palais, A global formulation of the Lie theory of transformation groups. Mem Am. Math. Soc., No. 22 (1957).

  250. R. S. Palais, Lectures on Morse Theory, Lecture Notes, Brandeis and Harward Universities (1962).

  251. R. S. Palais, “Morse theory on Hilbert manifolds,” Topology,2, No. 4, 299–340 (1963).

    Google Scholar 

  252. R. S. Palais, “Homotopy theory of infinite dimensional manifolds,” Topology,5, No. 1, 1–16 (1966).

    Google Scholar 

  253. R. S. Palais, “Lusternik-Schnirelman theory on Banach manifolds,” Topology,5, No. 2, 115–132 (1966).

    Google Scholar 

  254. R. S. Palais, Foundations of Global Non-Linear Analysis, Benjamin, New York (1968).

    Google Scholar 

  255. R. S. Palais, “The Morse lemma for Banach spaces,” Bull. Am. Math. Soc.,75, No. 5, 968–971 (1969).

    Google Scholar 

  256. R. S. Palais, “Critical point theory and minimax principle,” in: Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Am. Math. Soc., Providence, RI (1970), pp. 185–212.

    Google Scholar 

  257. R. S. Palais, “The principle of symmetric criticality,” Comm. Math. Phys.,69, 19–30 (1979).

    Google Scholar 

  258. R. S. Palais and C. L. Terng, Critical Point Theory and Submanifold Geometry, Lecture Notes in Math., No. 1353, Springer, Berlin (1353).

  259. R. S. Palais and S. Smale, “A generalized Morse theory,” Bull. Am. Math. Soc.,70, No. 1, 165–172 (1964).

    Google Scholar 

  260. H. Poincaré, “Sur les lignes géodésiques des surfaces convexes,” Trans. Am. Math. Soc.,6, 237–274 (1905).

    Google Scholar 

  261. P. Pucci and J. Serrin, “Extensions of the mountain pass theorem,” J. Funct. Anal.,59, 185–210 (1984).

    Google Scholar 

  262. P. Pucci and J. Serrin, “A mountain pass theorem,” J. Differential Equations,60, No. 1, 142–149 (1985).

    Google Scholar 

  263. P. Pucci and J. Serrin, “The structure of the critical set in the mountain pass theorem,” Trans. Am. Math. Soc.,299, No. 1, 115–132 (1987).

    Google Scholar 

  264. P. H. Rabinowitz, “Some minimax theorems and applications to nonlinear partial differential equations,” in: Nonlinear Analysis: A collection of papers in honor of Erich H. Rothe, L. Cesari, R. Kannan, H. F. Weinberger (eds.), Academic Press, New York (1978), pp. 161–177.

    Google Scholar 

  265. P. H. Rabinowitz, “The mountain pass theorem: theme and variations,” in: Differential Equations (Sao Paolo, Brazil. June 29 – July 17, 1981), Lecture Notes in Math., No. 957, Springer, Berlin (1982), pp. 237–271.

    Google Scholar 

  266. H.-B. Rademacher, “On the average indices of closed geodesics,” J. Differential Geom.,29, No. 1, 65–83 (1989).

    Google Scholar 

  267. J. R. Ramsay, “Extensions of Ljusternik-Schnirelmann category theory to relative and equivariant theories with an application to an equivariant critical point theorem,” Topology Appl.,32, No. 1, 49–60 (1989).

    Google Scholar 

  268. E. H. Rothe, “Critical point theory in Hilbert space under general boundary conditions,” J. Math. Anal. Appl.,11, 357–409 (1965).

    Google Scholar 

  269. E. H. Rothe, “On the theories of Morse and Lusternik-Schnirelman for open bounded sets on Fredholm Hilbert manifolds,” J. Math. Anal. Appl.,50, 80–107 (1975).

    Google Scholar 

  270. E. H. Rothe, “On the connection between critical point theory and Leray-Schauder degree,” J. Math. Anal. Appl.,88, 265–269 (1982).

    Google Scholar 

  271. J. T. Schwartz, “Generalizing the Lusternik-Schnirelman theory of critical points,” Comm. Pure Appl. Math.,17, 307–315 (1964).

    Google Scholar 

  272. J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York (1969).

    Google Scholar 

  273. D. Scolozzi, “Esistenza e molteplicità di geodetiche con ostacolo e con estremi variabili,” Ricerche Mat.,33, No. 2, 171–201 (1984).

    Google Scholar 

  274. D. Scolozzi, “Un teorema di esistenza di una geodetice chiusa su varietà con borde,” Boll. Un. Mat. Ital., Ser. 6,4A, No. 3, 451–457 (1985).

    Google Scholar 

  275. J.-P. Serre, “Homologie singulière des espaces fibrés,” Ann. Math.,54, No. 3, 425–505 (1951).

    Google Scholar 

  276. I. M. Singer and J. A. Thorpe, Lecture Notes on Elementary Topology and Geometry, Springer, New York (1967).

    Google Scholar 

  277. H. Singh, “Second order differential equations in Riemannian manifolds,” J. Math. Phys. Sci.,23, No. 6, 531–540 (1989).

    Google Scholar 

  278. S. Smale, “Morse theory and a non-linear generalization of the Dirichlet problem,” Ann. Math.,80, 382–396 (1964).

    Google Scholar 

  279. S. Smale, “On the Morse index theorem,” J. Math. Mech.,14, No. 6, 1049–1055 (1965).

    Google Scholar 

  280. S. Smale, “Differentiable dynamical systems,” Bull. Am. Math. Soc.,73, No. 6, 747–817 (1967).

    Google Scholar 

  281. S. Solimini, “Morse index estimates in min-max theorems,” Manuscripta Math.,63, 421–453 (1989).

    Google Scholar 

  282. G. Stefani, “On the minimum time problem,” in: Anal. and Contr. Nonlinear Systems, Selected Papers, 8th Internat. Symp. Math. Networks and Systems, (Phoenix, June 15–19, 1987), Amsterdam (1988), pp. 213–220.

  283. G. Ströhmer, “About the Morse theory for certain variational problems,” Math. Ann.,270, 275–284 (1985).

    Google Scholar 

  284. A. Szulkin, “Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,” Ann. Inst. H. Poincaré Anal. Non Linéaire,3, No. 2, 77–109 (1986).

    Google Scholar 

  285. A. Szulkin, “Ljusternik-Schnirelmann theory on C1-manifolds,” Ann. Inst. H. Poincaré, Anal. Non Linéaire,5, No. 2, 119–139 (1988).

    Google Scholar 

  286. A. Szulkin, “Morse theory and existence of periodic solutions of convex Hamiltonian systems,” Bull. Soc. Math. France,116, No. 2, 171–197 (1988).

    Google Scholar 

  287. A. Szulkin, “An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems,” Math. Ann.,283, No. 2, 241–255 (1989).

    Google Scholar 

  288. A. Szulkin, “A relative category and applications to critical point theory for strongly indefinite functionals,” Nonlinear Anal.,15, No. 8, 725–739 (1990).

    Google Scholar 

  289. H. J. Sussmann, “Lie brackets, real analyticity and geometric control,” in: Differential Geometric Control Theory (Houghton, Mich., 1982), Birkhäuser, Boston (1983), pp. 1–116.

    Google Scholar 

  290. K. Tanaka, “Morse indices at critical points related to the symmetric mountain pass theorem and applications,” Comm. Partial Differential Equations,14, No. 1, 99–128 (1989).

    Google Scholar 

  291. C.-L. Terng, “Proper Fredholm submanifolds of Hilbert spaces,” J. Differential Geom.,29, No. 1, 9–47 (1989).

    Google Scholar 

  292. S. Tersian, “A mini max theorem and applications to nonresonance problems for semilinear equations,” Nonlinear Anal.,10, No. 7, 651–668 (1986).

    Google Scholar 

  293. A. J. Tromba, “The Morse lemma on arbitrary Banach spaces,” Bull. Am. Math. Soc.,79, No. 1, 85–86 (1973).

    Google Scholar 

  294. A. Tromba, “The Morse lemma on Banach spaces,” Proc. Am. Math. Soc.,34, No. 2, 396–402 (1972).

    Google Scholar 

  295. A. J. Tromba, “Euler-Poincaré index theory on Banach manifolds,” Ann. Scuola Norm. Sup. Pisa Cl. Sci (4),2, No. 1, 89–106 (1975).

    Google Scholar 

  296. A. Tromba, “A general approach to Morse theory,” J. Differential Geom.,12, No. 1, 47–85 (1977).

    Google Scholar 

  297. S. B. Tshinanga, “An invariance property of the critical groups,” Rend. Istit. Mat. Univ. Trieste,20, No. 1, 29–37 (1989).

    Google Scholar 

  298. K. Uhlenbeck, “Morse theory on Banach manifolds,” J. Funct. Anal.,10, 430–445 (1972).

    Google Scholar 

  299. S. A. Vakhrameev, “Nondegeneracy and Morse index of extremals for certain optimal control problems,” in: Proc. XV Internat. Conf. Math. Optimization, Theory and Appl. (Eisenach, Dec 9–13, 1990).

  300. S. A. Vakhrameev, “Morse theory in geometric control problems,” in: Proc. Internat. Conf. Optimization and Control Theory (Bronislawow, Poland, May 6–10, 1991), Wyd. Uniw. łódzkiego, łódz (1991), pp. 84–86.

    Google Scholar 

  301. C. Viterbo, “Equivariant Morse theory for starshaped Hamiltonian systems,” Trans. Amer. Math. Soc.,311, No. 2, 621–655 (1989).

    Google Scholar 

  302. Q. Wang and J. L. Speyer, “Necessary and sufficient conditions for local optimality of a periodic process,” SIAM J. Control Optim.,28, No. 2, 482–497 (1990).

    Google Scholar 

  303. T. X. Wang, “A minimax principle without differentiability,” Nanjing Daxue Xuebao Shuxue Bannian Kan,6, No. 2, 46–52 (1989).

    Google Scholar 

  304. T. X. Wang, “Morse theory on Banach manifolds,” Acta Math. Sinica (N. S.),5, No. 3, 250–262 (1989).

    Google Scholar 

  305. T. Wang, “Lusternik-Schnirelman category theory on closed subsets of Banach manifolds,” J. Math. Anal. Appl.,149, No. 2, 412–423 (1990).

    Google Scholar 

  306. B. Wegner, über das kritische Verhalten zylindrischer Abstandsfunktionen auf Untermannigfaltigkeiten euklidischer Räume,” Serdica,15, No. 1, 19–27 (1989).

    Google Scholar 

  307. M. Willem, Lectures on Critical Point Theory, Fondaco Univ. de Brazilia, Trobalho de Math., No. 199 (1983).

  308. M. Willem, “Aspects of Morse theory,” Rend. Istit. Mat. Univ. Trieste,19, No. 2, 155–164 (1987).

    Google Scholar 

  309. M. Willem,“Bifurcation, symmetry and Morse theory,” Boll. Un. Mat. Ital. Ser, 7,3B, No. 1, 17–27 (1989).

    Google Scholar 

  310. V. Zeidan, “Conjugate points criterion for optimal control,” in: Proc. 22nd IEEE Conf. on Decision and Control (San Antonio, Texas, December 14–16, 1983), Vol. 1, New York (1983), pp. 379–383.

    Google Scholar 

  311. V. Zeidan, “Extended Jacobi sufficiency criterion for optimal control,” SIAM J. Control Optim.,22, No. 2, 294–301 (1984).

    Google Scholar 

  312. V. Zeidan, “First and second order sufficient conditions for optimal control and the calculus of variations,” Appl. Math. Optim.,11, No. 3, 209–226 (1984).

    Google Scholar 

  313. V. Zeidan, “A modified Hamilton-Jacobi approach in the generalized problem of Bolza,” Appl. Math. Optim.,11, No. 2, 97–109 (1984).

    Google Scholar 

  314. V. Zeidan and P. Zezza, “New second order necessary conditions for optimal control problems,” in: Proc. 25th IEEE (Athens, December 10–12, 1986), Vol. 3, New York (1986), pp. 1977–1979.

    Google Scholar 

  315. V. Zeidan and P. Zezza, “The conjugate point condition for smooth control sets,” J. Math. Anal. Appl.,132, No. 2, 572–589 (1988).

    Google Scholar 

  316. V. Zeidan and P. Zezza, “Necessary conditions for optimal control problems: conjugate points,” SIAM J. Control Optim.,26, No. 3, 592–608 (1988).

    Google Scholar 

  317. V. Zeidan and P. Zezza, “An extension of the conjugate point conditions to the case of variable endpoints,” in: Proc. 27th IEEE Conf. on Decision and Control (Austin, Texas, Dec. 7–9, 1988), Vol. 2, New York (1988), pp. 1187–1191.

    Google Scholar 

  318. V. Zeidan and P. Zezza, “Coupled points in the calculus of variations and applications to periodic problems,” Trans. Am. Math. Soc.,315, No. 1, 323–335 (1989).

    Google Scholar 

  319. E. Zeidler, “Ljusternik-Schnirelman theory on general level sets,” Math. Nachr.,129, 235–259 (1986).

    Google Scholar 

  320. V. C. Zelati, “Periodic solutions of second order Hamiltonian systems and Morse theory,” in: Proc. Internat. Conf. on Recent Advances in Hamiltonian Systems (Univ. of L'Aquila, 10–13 June 1986), World Scientific, Singapore (1987), pp. 155–161.

    Google Scholar 

  321. M. Zisman, “La théorie de Marston Morse. I. Géométrie différentielle,” Sém. H. Cartan, 1959/60, Fasc. 2, Exp. 14, école Norm. Sup., Paris (1961).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 39, pp. 41–117, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakhrameev, S.A. Morse theory and Lyusternik-Shnirelman theory in geometric control theory. J Math Sci 71, 2434–2485 (1994). https://doi.org/10.1007/BF02111558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02111558

Keywords

Navigation