Skip to main content
Log in

Investigations of the inhibitory effect of propranolol, chlorpromazine, quinine, and dicyclohexylcarbodiimide on the swelling of yeast mitochondria in potassium acetate. Evidences for indirect effects mediated by the lipid phase

  • Original Article
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mode of action of propranolol, chlorpromazine, and quinine, three cationic drugs inhibiting swelling of yeast mitochondria in potassium acetate, was investigated by looking at their effect on fluorescent probes of the polar heads and of the nonpolar moiety of the membranes, under inhibitory conditions of swelling. As expected, propranolol and chlorpromazine exhibited specificity for anionic phospholipids since they increased the binding of the anionic probe 1-anilino 8-naphthalenesulfonate (ANS). Although propranolol did not release 1,6-diphenyl-1,3,5-hexatriene (DPH) from the hydrophobic moiety of the membrane, it increased the excimer/ monomer fluorescence ratio of 10-(1-pyrene)decanoate, suggesting that it induced a limitation in the movements of the aliphatic chains of phospholipids. Opposite to propranolol, chlorpromazine removed DPH from the membrane, suggesting that it bound essentially to the hydrophobic moiety. However, chloramphenicol, which was also able to remove DPH but did not increase the binding of ANS, did not inhibit swelling. Inhibition by chlorpromazine therefore appeared to be related to its binding to the hydrophobic moiety of anionic phospholipids. Quinine had no effect on membrane properties: at inhibitory concentrations of swelling in potassium acetate, it did not inhibit swelling in ammonium phosphate (mediated by the phosphate/H+ cotransporter), whereas propranolol and chlorpromazine did, suggesting a more specific effect of quinine on (a) protein(s) involved in the K+/H+ exchange. Dicyclohexylcarbodiimide (DCCD), which irreversibly inhibits the swelling in potassium acetate, bound to ethanolamine heads; despite this effect, DCCD had no major consequences on the binding of the probes. Consequently, propranolol and chlorpromazine are of no help for characterizing protein(s) catalyzing the K+/H+ exchange, although their effect on lipids seems to involve limited zones of the inner mitochondrial membrane. Quinine and DCCD, although they also bind to lipids, may inhibit the activity by acting on a limited number of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beavis, A. D., and Garlid, K. D. (1990).J. Biol. Chem. 265, 2538–2545.

    PubMed  Google Scholar 

  • Bernardi, P., Angrilli, A., Ambrosin, V., and Azzone, G. F. (1989).J. Biol. Chem. 264, 18902–18906.

    PubMed  Google Scholar 

  • Chappell, J. B., and Crofts, A. R. (1966). InRegulation of Metabolic Processes in Mitochondria (Tager, J. M., et al., eds.,) Vol. 7, Elsevier, Amsterdam, pp. 293–312.

    Google Scholar 

  • Cooper, C. E., Wrigglesworth, J. M., and Nicholls, P. (1990).Biochem. Biophys. Res. Commun. 173, 1008–1012.

    PubMed  Google Scholar 

  • Cullis, P. R., Verklej, A. J., and Ververgaert, P. H. J. T. (1978).Biochim. Biophys. Acta 513, 11–20.

    PubMed  Google Scholar 

  • Dabadie, P., Mazat, J. P., Rigoulet, M., and Guérin, B. (1986). 4th EBEC reports, p. 288.

  • Daum, G. (1985).Biochim. Biophys. Acta 822, 1–42.

    PubMed  Google Scholar 

  • Diwan, J. J., and Moore, C. (1990).Biochem. Int. 22, 843–848.

    PubMed  Google Scholar 

  • Dordick, R. S., Brierley, G. P., and Garlid, K. D. (1980).J. Biol. Chem. 255, 10299–10305.

    PubMed  Google Scholar 

  • Fournier, N., Ducet, G., and Crevat, A. (1987).J. Bionerg. Biomembr. 19, 297–303.

    Google Scholar 

  • Galla, H. J., and Sackmann, E. (1975).J. Am. Chem. Soc. 97, 4114–4120.

    PubMed  Google Scholar 

  • Galla, H. J., and Luisetti, J. (1980).Biochim. Biophys. Acta 596, 108–117.

    PubMed  Google Scholar 

  • Galla, H. J., and Hartmann, W. (1981).Methods Enzymol. 72, 471–479.

    PubMed  Google Scholar 

  • Garlid, K. D. (1980).J. Biol. Chem. 255, 11273–11279.

    PubMed  Google Scholar 

  • Garlid, K. D. (1988). InIntegration of Mitochondrial Function (Lemasters, J. J., Hackenbrock, C. R., Thurman, R. G., and Westerhoff, H. V., eds.), Plenum, New York, pp. 259–278.

    Google Scholar 

  • Garlid, K. D., and Beavis, A. D. (1986).Biochim. Biophys. Acta 853, 187–204.

    PubMed  Google Scholar 

  • Garlid, K. D., and Nakashima, R. A. (1983).J. Biol. Chem. 258, 7974–7980.

    PubMed  Google Scholar 

  • Goldstein, D. B. (1984).Annu. Rev. Pharmacol. Toxicol. 24, 43–64.

    PubMed  Google Scholar 

  • Guérin, B., Labbe, P., and Somlo, M. (1979).Methods Enzymol. 55, 49–59.

    Google Scholar 

  • Guérin, B., Bunoust, O., Rouqueys, V., and Rigoulet, M. (1994).J. Biol. Chem. 269, 25406–25410.

    PubMed  Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. C258, 755–786.

    Google Scholar 

  • Halestrap, A. P. (1989).Biochim. Biophys. Acta 973, 355–382.

    PubMed  Google Scholar 

  • Halestrap, A. P., Connern, C. P., and Griffiths, E. J. (1992). InMolecular Mechanisms of Transport (Quagliariello, E., and Palmieri, F., eds.), Elsevier, Amsterdam, pp. 259–266.

    Google Scholar 

  • Hassinen, I. E., and Vuokila, P. T. (1993).Biochim. Biophys. Acta 1144, 107–124.

    PubMed  Google Scholar 

  • Heape, A. M., Juguelin, H., Boiron, F., and Cassagne, C. (1985).J. Chromatogr. 322, 391–395.

    PubMed  Google Scholar 

  • Heape, A. M., Juguelin, H., Fabre, M., Boiron, F., Garbay, B., Fournier, M., Bonnet, J., and Cassagne, C. (1986).Dev. Brain Res. 25, 173–180.

    Google Scholar 

  • Hoffman, B., Stöckl, A., Schlame, M., Beyer, K., and Klingenberg, M. (1994).J. Biol. Chem. 269, 1940–1944.

    PubMed  Google Scholar 

  • Huunan-SeppÄlÄ, A. (1972).Acta Chem. Scand. 26, 2713–2733.

    PubMed  Google Scholar 

  • Jezek, P., Mahdi, F. and Garlid, K. D. (1990).J. Biol. Chem. 265, 10522–10526.

    PubMed  Google Scholar 

  • Joshi, U. M., Rao, P., Kodavanti, S., Lockard, V. G., and Mehendale, H. M. (1989).Biochim. Biophys. Acta 1004 309–320.

    PubMed  Google Scholar 

  • Jung, D. W., and Brierley, G. P. (1986).J. Biol. Chem. 261, 6408–6415.

    PubMed  Google Scholar 

  • Kakar, S. S., Mahdi, F, Li, X., and Garlid, K. D. (1989).J. Biol. Chem. 264, 5846–5851.

    PubMed  Google Scholar 

  • Kaihovaara, P., Raulo, E., and Kinnunen, P. K. J. (1991).Biochemistry 30, 8380–8396.

    PubMed  Google Scholar 

  • Kinnaly, K. W., Antonenko, Y. N., and Zorov, D. B. (1992).J. Bioenerg. Biomembr. 24, 99–110.

    PubMed  Google Scholar 

  • Kramer, R., and Palmieri, F. (1989).Biochim. Biophys. Acta 974, 1–23.

    PubMed  Google Scholar 

  • Krebs, J. J. R., Hauser, H., and Carafoli, E. (1979).J. Biol. Chem. 254, 5308–5316.

    PubMed  Google Scholar 

  • Lee, A. G. (1977).Moles. Pharmacol. 13, 474–487.

    Google Scholar 

  • Lee, A. G. (1978).Biochim. Biophys. Acta 514, 95–104.

    PubMed  Google Scholar 

  • Li, X., Hegazy, M. G., Mahdi, F., Jezek, P., Lane, R. D., and Garlid, K. D. (1990).J. Biol. Chem. 265, 15316–15322.

    PubMed  Google Scholar 

  • Luxnat, M., and Galla, H. J. (1986).Biochim. Biophys. Acta 856, 274–282.

    PubMed  Google Scholar 

  • Manon, S., and Guérin, M. (1992).Biochim. Biophys. Acta 1108, 169–176.

    PubMed  Google Scholar 

  • Manon, S., and Guérin, M. (1993).J. Bioenerg. Biomembr. 25, 671–678.

    PubMed  Google Scholar 

  • Manon, S., and Guérin, M. (1995).Biochem. Mol. Biol. Internat. 35, 585–593.

    Google Scholar 

  • Martin, W. H., Beavis, A. D., and Garlid, K. D. (1984).J. Biol. Chem. 259, 2062–2065.

    PubMed  Google Scholar 

  • Martin, W. H., DiResta, D. J., and Garlid, K. D. (1986).J. Biol. Chem. 261, 12300–12305.

    PubMed  Google Scholar 

  • Mitchell, P. (1966)Biol. Rev. 41, 445–502.

    PubMed  Google Scholar 

  • Nakashima R. A., and Garlid, K. D. (1982)J. Biol. Chem. 257, 9252–9254.

    PubMed  Google Scholar 

  • Pereira, R. S., Bertocchi, A. P. F., and Vercesi, A. E. (1993).Biochem. Pharmacol. 44, 1795–1801.

    Google Scholar 

  • Shibata, A., Ikawa, K., Shimooka, T., and Terada, H. (1994).Biochim. Biophys. Acta 1192, 71–78.

    PubMed  Google Scholar 

  • Sorgato, M. C., and Moran, O. (1993).Crit. Rev. Biochem. Mol. Biol. 18, 127–171.

    Google Scholar 

  • Surewicz, W., and Leyko, W. (1981).Biochim. Biophys. Acta 643, 387–397.

    PubMed  Google Scholar 

  • Szabo, I., and Zoratti, M. (1992).J. Bionerg. Biomembr. 24, 111–117.

    Google Scholar 

  • Valle, V. G. R., Fagian, M. M., Parentoni, L. S., Meinicke, A. R., and Vercesi, A. E. (1993).Arch. Biochem. Biophys. 307, 1–7.

    PubMed  Google Scholar 

  • Villalobo, A., Briquet, M., and Goffeau, A. (1981).Biochim. Biophys. Acta 637, 124–129.

    PubMed  Google Scholar 

  • Welihinda, A. A., Trumbly, R. J., Garlid, K. D., and Beavis, A. D. (1993).Biochim. Biophys. Acta 1144, 367–373.

    PubMed  Google Scholar 

  • Zachowski, A., and Durand, P. (1988).Biochim. Biophys. Acta 937, 411–416.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roucou, X., Manon, S. & Guérin, M. Investigations of the inhibitory effect of propranolol, chlorpromazine, quinine, and dicyclohexylcarbodiimide on the swelling of yeast mitochondria in potassium acetate. Evidences for indirect effects mediated by the lipid phase. J Bioenerg Biomembr 27, 353–362 (1995). https://doi.org/10.1007/BF02110104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110104

Key words

Navigation