Skip to main content
Log in

Abstract

We study representations of the central extension of the Lie algebra of differential operators on the circle, the

algebra. We obtain complete and specialized character formulas for a large class of representations, which we call primitive; these include all quasi-finite irreducible unitary representations. We show that any primitive representation with central chargeN has a canonical structure of an irreducible representation of the

with the same central charge and that all irreducible representations of

with central chargeN arise in this way. We also establish a duality between “integral” modules of

and finite-dimensional irreducible modules ofgl N , and conjecture their fusion rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [ASvM] Adler, M., Shiota, T., van Moerbeke, P.: From thew algebra to its central extension: A τ-function approach. Preprint

  • [AFOQ] Awata, H., Fukuma, M., Odake, S., Quano, Y.-H.: Eigensystem and full character formula of the algebra withc=1. Preprint YITP/K-1049, Dec 1993, hep-th/9312208

  • [AFMO] Awata, H., Fukuma, M., Matsuo, Y., Odake, S.: Determinant formulae of quasi-finite representation of algebra at lower levels. Preprint YITP/K-1054, Jan 1994, hep-th/9402001

  • [BBSS] Bais, F.A., Bouwknegt, P., Schoutens, K., Surridge, M.: Extensions of the Virasoro algebra constructed from Kac-Moody algebras using higher order Casimir invariants. Nucl. Phys.B304, 348–370 (1988)

    Google Scholar 

  • [BK] Bakas, I., Kiritsis, E.: Bosonic realization of a universal and Z parafermions. Nucl. Phys.B343, 185–204 (1990)

    Google Scholar 

  • [B] Borcherds, R.: Vertex algebras, Kač-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA83, 3068–3071 (1986)

    Google Scholar 

  • [Bo] Bouwknegt, P.: “Extended conformal algebras from Kac-Moody algebras.” In: Infinitedimensional Lie algebras and groups, ed. V. Kac, Adv. Ser. in Math. Phys.7, Singapore: World Scientific, 1989, pp. 527–555

    Google Scholar 

  • [BMP] Bouwknegt, P., McCarthy, J., Pilch, K.: Semi-infinite cohomology of. Preprint USC, Feb 1993, hep-th/9302086

  • [BS] Bouwknegt, P., Schoutens, K.: W-symmetry in conformal field theory. Phys. Rep.223, 183–276 (1993)

    Google Scholar 

  • [CTZ] Capelli, A., Trugenberger, C.A., Zemba, G.R.: Infinite symmetry in the quantum Hall effect. Nucl. Phys.B396, 465–490 (1993) and Classification of quantum Hall universality classes by symmetry. Phys. Rev. Lett.72, 1902–1905 (1994)

    Google Scholar 

  • [FL] Fateev, V., Lukyanov, S.: Conformally invariant models of two-dimensional quantum field theory with ℤ n -symmetry. Sov. Phys. JETP67, 447–462 (1988)

    Google Scholar 

  • [FF1] Feigin, B., Frenkel, E.: Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras. Int. J. Mod. Phys. A Suppl.1A, 197–215 (1992)

    Google Scholar 

  • [FF2] Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. Yukawa Institute preprint YUTP/K-1036, Sep 1993, hep-th/9310022. To appear in Proceedings of the Summer School Integrable Systems and Quantum Groups, Montecatini Terme, Italy, June 1993, Lect. Notes in Math., Springer Verlag

  • [FFu] Feigin, B.L., Fuchs, D.B.: Cohomology of some nilpotent subalgebras of Virasoro algebra and affine Kac-Moody Lie algebras. J. Geom. Phys.5, 209–235 (1988)

    Google Scholar 

  • [F1] Frenkel, I.B.: Representations of affine Lie algebras, Hecke modular forms and Kortewegde Vries type equations. Lect. Notes in Math.933, 71–110 (1982)

    Google Scholar 

  • [F2] Frenkel, I.B.: Representations of Kac-Moody algebras and dual resonance models. In: Applications of Group Theory in Physics and Mathematical Physics, eds. M. Flato, P. Sally, G. Zuckerman, Lect. in Appl. Math.21, Providence, RI: AMS, 1985, pp. 325–353

    Google Scholar 

  • [FHL] Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc.104, No. 494 (1993)

    Google Scholar 

  • [FK] Frenkel, I.B., Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math.62, 23–66 (1980)

    Google Scholar 

  • [FLM] Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. New York: Academic Press, 1988

    Google Scholar 

  • [FKN] Fukuma, M., Kawai, H., Nakayama, R.: Infinite Dimensional Grassmannian Structure of Two-Dimensional Quantum Gravity. Commun. Math. Phys.143, 371–403 (1992)

    Google Scholar 

  • [G] Goddard, P.: Meromorphic conformal field theory. In: Infinite-dimensional Lie algebras and groups. ed. V. Kac, Adv. Ser. in Math. Phys.7, Singapore: World Scientific, 1989, pp. 556–587

    Google Scholar 

  • [IKS] Iso, S., Karabali, D., Sakita, B.: Fermions in the lowest Landau level bosonization,w algebra, droplets, chiral bosons. Phys. Lett.B296, 143–150 (1992)

    Google Scholar 

  • [K] Kac, V.G.: Contravariant form for infinite-dimensional Lie algebras and superalgebras. Lect. Notes in Phys.94, 441–445 (1979)

    Google Scholar 

  • [K1] Kac, V.G.: An elucidation of “Infinite-dimensional algebras ... and the very strange formula.E (1)8 and the cube root of the modular invariant j”. Adv. Math.35, 264–273 (1980)

    Google Scholar 

  • [K2] Kac, V.G.: Infinite-dimensional Lie algebras. Third edition, Cambridge: Cambridge University Press, 1990

    Google Scholar 

  • [KP1] Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA78, 3308–3312 (1981)

    Google Scholar 

  • [KP2] Kac, V.G., Peterson, D.H.: Lectures on the infinite wedge representation and the MKP hierarchy. Seminaire de Math. Superieures, Les Presses de L'Universite de Montreal102, 141–186 (1986)

    Google Scholar 

  • [KR] Kac, V.G., Radul, A.: Quasi-finite highest weight modules over the Lie algebra of differential operators on the circle. Commun. Math. Phys.157, 429–457 (1993), hep-th/9308153

    Google Scholar 

  • [L] Li, H.: Local systems of vertex operators, vertex superalgebras and modules. Preprint

  • [M] Macdonald, I.: Symmetric functions and Hall polynomials. Oxford: Clarendon Press, 1979

    Google Scholar 

  • [Mat] Matsuo, Y.: Free fields and quasi-finite representations of. Phys. Lett.B326, 95–100 (1994), hep-th/9312192

    Google Scholar 

  • [N] Niedermaier, M.: Irrational free field resolutions for and extended Sugawara construction. Commun. Math. Phys.148, 249–281 (1992)

    Google Scholar 

  • [PRS] Pope, C.N., Romans, L.J., Shen, X.: and the Racah-Wigner algebra. Nucl. Phys.339B, 191–221 (1990)

    Google Scholar 

  • [R] Radul, A.: Lie algebras of differential operators, their central extensions, and W-algebras. Funct. Anal. and Appl.25, 86–91 (1991)

    Google Scholar 

  • [W] Wang, W.: Rationality of Virasoro vertex operator algebras. Duke Math. J., IMRN,71, 197–211 (1993)

    Google Scholar 

  • [Z] Zamolodchikov, A.: Infinite additional symmetries in two dimensional conformal quantum field theory. Theor. Math. Phys.65, 1205–1213 (1986)

    Google Scholar 

  • [Zh] Zhu, Y.: Vertex operator algebras, elliptic functions and modular forms. Ph.D. thesis, Yale Univ. (1990)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Jimbo

Supported by a Junior Fellowship from Harvard Society of Fellows and in part by NSF grant DMS-9205303.

Supported in part by NSF grant DMS-9103792.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenkel, E., Kac, V., Radul, A. et al. with central chargeN . Commun.Math. Phys. 170, 337–357 (1995). https://doi.org/10.1007/BF02108332

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02108332

Keywords

Navigation