Skip to main content
Log in

Intralineage diversity of archaebacterial ribosomes: A dichotomy of ribosome features separates sulfur-dependent archaebacteria and methanococcaceae from other archaebacterial taxa

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The aggregate masses and relative protein contents of eubacterial and archaebacterial ribosomes have been estimated from the buoyant densities of the ribosomal subunits and the anhydrous weights of the rRNA species. In contrast to the situation in eubacteria, archaebacterial ribosomes fall into two size classes that differ only in the relative abundances of their protein moieties. One class comprises eubacterial-sized particles (2.3-megadalton (Mdal) monomer; 1.5-Mdal and 0.8-Mdal large and small subunits, respectively) having a “eubacterial” composition of roughly one-third protein and two-thirds RNA. The other class comprises ribosomes heavier than those of eubacteria (3-Mdal monomer; 1.8-Mdal and 1.2-Mdal subunits) and having the same protein/RNA ratio as eukaryotic ribosomes (55% and 50% protein for the small and large subunits, respectively). Eubacterialsized ribosomes are harbored by extreme halophiles and all methanogens but the Methanococcaceae. Ribosomes heavier than those of eubacteria are found in the Methanococcaceae and all sulfur-dependent thermophiles. The data indicate that a change in ribosome structure occurred within the “methanogen” branch; therefore, although ribosome composition is distributed in archaebacteria, its distribution does not break them into two separate kingdoms: The Methanococcaceae and Methanobacteriaceae are related to each other far more closely than either is to the sulfur-dependent thermophiles, and the root of the archaebacterial tree definitely does not lie betweenMethanobacterium andMethanococcus. We surmise that ribosomes larger than those of eubacteria represent a more rudimentary organelle structure that became fixed owing to nonparallel evolution of the translational machinery in archaebacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bruner R, Vinograd J (1965) The evaluation of standard sedimentation coefficients of sodium RNA and sodium DNA from sedimentation velocity data in concentrated NaCl and CsCl solutions. Biochim Biophys Acta 108:18–25

    PubMed  Google Scholar 

  • Cammarano P, Romeo A, Gentile M, Felsani A, Gualerzi C (1972) Size heterogeneity of the large ribosomal subunits and conservation of the small subunits in eukaryote evolution. Biochim Biophys Acta 281:597–624

    PubMed  Google Scholar 

  • Cammarano P, Felsani A, Romeo A, Alberghina FM (1973) Particle weights of active ribosomal subunits fromNeurospora crassa. Biochim Biophys Acta 308:404–411

    PubMed  Google Scholar 

  • Cammarano P, Teichner A, Londei P (1986) Intralineage heterogeneity of archaebacterial ribosomes. Evidence for two physicochemically distinct ribosome classes within the third urkingdom. Syst Appl Microbiol 7:137–146

    Google Scholar 

  • Fox GE, Stackebrandt R, Hespell J, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    PubMed  Google Scholar 

  • Gupta R, Lanter JM, Woese CR (1983) Sequence of 16S RNA fromHalobacterium vulcanii. Science 221:656–659

    Google Scholar 

  • Hamilton MG, Ruth ME (1969) The dissociation of rat liver ribosomes by ethylenediaminetetraacetic acid: molecular weights, chemical composition and buoyant densities of the subunits. Biochemistry 8:851–856

    PubMed  Google Scholar 

  • Hill WE, Anderegg JW, Van Holde KE (1970) Effects of solvent environment and mode of preparation on the physical properties of ribosomes fromEscherichia coli. J Mol Biol 53:107–117

    PubMed  Google Scholar 

  • Huet J, Schnabel R, Sentenac A, Zillig W (1983) Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J 2:1291–1294

    PubMed  Google Scholar 

  • Jarsch M, Böck A (1985a) Sequence of the 23S RNA gene from the archaebacteriumMethanococcus vannielii. Evolutionary and functional implications. Mol Gen Genet 200:305–312

    Google Scholar 

  • Jarsch M, Böck A (1985b) Sequence of the 16S ribosomal RNA gene fromMethanococcus vannielii. Evolutionary implications. Syst Appl Microbiol 6:54–59

    Google Scholar 

  • Lake JA, Henderson A, Oakes M, Clark MW (1984) Eocytes: A new ribosome structure indicates a kingdom with relationship to eukaryotes. Proc Natl Acad Sci USA 81:3786–3790

    PubMed  Google Scholar 

  • Londei P, Teichner A, Cammarano P, De Rosa M, Gambacorta A (1983) Particle weights and protein composition of the ribosomal subunits of the extremely thermoacidophilic archaebacteriumCaldariella acidophila. Biochem J 209:461–470

    PubMed  Google Scholar 

  • Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602

    PubMed  Google Scholar 

  • Olsen GJ, Pace NR, Nuell M, Kaine BP, Gupta R, Woese CR (1985) Sequence of the 16S rRNA gene from the thermoacidophilic archaebacteriumSulfolobus solfataricus and its evolutionary implications. J Mol Evol 22:301–307

    PubMed  Google Scholar 

  • Reale-Scafati A, Stornaiuolo MR, Novaro P (1969) Determination of the light scattering properties of ribosomal particles. Report ISS 69/29, Istituto Superiore di Sanita', Rome, Italy, pp 1–53

    Google Scholar 

  • Sacchi A, Ferrini U, Londei P, Cammarano P, Maraldi N (1977) Mitochondrial and cytoplasmic ribosomes from mammalian tissues. Further characterization of ribosomal subunits and validity of buoyant density methods for determination of the chemical composition and partial specific volume of ribonucleoprotein particles. Biochem J 168:254–269

    Google Scholar 

  • Schmid G, Böck A (1982a) Ribosomal protein composition of the archaebacteriumSulfolobus. Mol Gen Genet 185:498–501

    Google Scholar 

  • Schmid G, Böck A (1982b) The ribosomal protein composition of five methanogenic bacteria. Zentralbl Bakteriol Hyg [C] 3: 343–353

    Google Scholar 

  • Schopf JW (1977) Biostratigraphic usefulness of stromatolite Precambrian microbiotas: a preliminary analysis. Precambrian Res 5:143–173

    Google Scholar 

  • Strøm AR, Visentin LP (1973) Acidic ribosomal proteins from the extreme halophileHalobacterium cutirubrum. FEBS Lett 37:274–280

    PubMed  Google Scholar 

  • Van Holde KE, Hill WE (1974) General physical properties of ribosomes. In: Nomura M, Tissières A, Lengyel P (eds Ribosomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 53–91

    Google Scholar 

  • Visentin LP, Chow C, Matheson AT, Yaguchi M, Rollin F (1972)Halobacterium cutirubrum ribosomes. Properties of the ribosomal proteins and ribonucleic acid. Biochem J 130:103–110

    PubMed  Google Scholar 

  • Wittman HG (1982) Components of bacterial ribosomes. Annu Rev Biochem 51:155–183

    PubMed  Google Scholar 

  • Woese CR (1982) Archaebacteria and cellular origins: an overview. Zentralbl Bakteriol Hyg [C] 3:1–17

    Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domains: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    PubMed  Google Scholar 

  • Woese CR, Gupta R (1981) Are archaebacteria merely derived prolaryotes? Nature 289:95–96

    PubMed  Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11:245–252

    PubMed  Google Scholar 

  • Zillig W, Schnabel R, Tu J, Stetter KO (1982) The phylogeny of archaebacteria including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwissenschaften 69:197–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teichner, A., Londei, P. & Cammarano, P. Intralineage diversity of archaebacterial ribosomes: A dichotomy of ribosome features separates sulfur-dependent archaebacteria and methanococcaceae from other archaebacterial taxa. J Mol Evol 23, 343–353 (1986). https://doi.org/10.1007/BF02100644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100644

Key words

Navigation