Skip to main content
Log in

Alarm response by a plethodontid salamander (Desmognathus ochrophaeus): Conspecific and heterospecific “Schreckstoff”

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The detection of chemical alarm cues plays an important role for predator avoidance in many taxonomic groups, but little is known about the presence of such chemical cues in adult or caudate amphibians. We investigated the response (i.e., aversion or nonaversion) to chemical cues from damaged salamander skin and mealworms (Tenebrio molitor) in the plethodontid salamander,Desmognathus ochrophaeus. Avoidance responses were demonstrated to skin extracts of both conspecific and heterospecific salamanders. However, salamanders (D. ochrophaeus) did not avoid heated conspecific skin, fresh conspecific viscera, fresh mealworm, or freshPlethodon richmondi skin extracts. These results indicate that chemical alarm cues are: (1) present in the skin ofDesmognathus salamanders, (2) not present in mealworm or the viscera ofDesmognathus salamanders, and (3) denatured or deactivated by heating. These results also suggest that an avoidance response to chemical cues from damaged conspecifics has adaptive value in predator avoidance in terrestrial as well as aquatic vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brandon, R.A., andHuheey, J.E. 1981. Toxicity in the plethodontid salamandersPseudotriton ruber andPseudotriton montanus (Amphibia, Caudata).Toxicon 19:25–31.

    Article  PubMed  Google Scholar 

  • Brodie, E.D., Jr. 1968a. Investigations on the skin toxin of the red-spotted newt,Notophthalmus viridescens viridescens.Am. Midl. Nat. 80:276–280.

    Google Scholar 

  • Brodie, E.D., Jr. 1968b. Investigations on the skin toxin of the adult rough-skinned newt,Taricha granulosa.Copeia 1968:307–313.

    Google Scholar 

  • Brodie, E.D., Jr., Hensel, J.L., andJohnson, J.A. 1974. Toxicity of the urodele amphibiansTaricha, Notophthalmus, Cynops andParamesotriton (Salamandridae).Copeia 1974:506–511.

    Google Scholar 

  • Brodie, E.D., Jr., Formanowicz, D.R., andBrodie, E.D., III. 1991. Predator avoidance and antipredator mechanisms: distinct pathways to survival.Ethol. Ecol. Evol. 3:73–77.

    Google Scholar 

  • Budavari, S. (ed.). 1989. The Merck Index, 11th ed. Merck and Co., Rahway, New Jersey.

    Google Scholar 

  • Cooper, W.E., Jr. 1990. Chemical detection of predators by a lizard, the broad-headed skink (Eumeces laticeps).J. Exp. Zool. 256:162–167.

    Article  Google Scholar 

  • Elliott, S.E., Kats, L.B., andBreeding, J.A. 1993. The use of conspecific chemical cues for cannibal avoidance in California newts (Taricha torosa).Ethology 95:186–192.

    Google Scholar 

  • Fuhrman, F.A. 1967. Tetrodotoxin.Sci. Am. 217:60–71.

    PubMed  Google Scholar 

  • Goto, T., Kishi, Y., Takahashi, S., andHiratz, Y. 1965. Tetrodotoxin.Tetrahedron 21:2059.

    Article  PubMed  Google Scholar 

  • Hews, D. 1988. Alarm response in larval toads,Bufo boreas: Release of larval chemicals by a natural predator and its effect on predator capture efficiency.Anim. Behav. 36:125–133.

    Google Scholar 

  • Hews, D.K., andBlaustein, A.R. 1985. An investigation of the alarm response inBufo boreas andRana cascadae tadpoles.Behav. Neural Biol. 43:47–57.

    Article  PubMed  Google Scholar 

  • Hileman, K.S., andBrodie, E.D., Jr. 1994. Survival strategies of the salamanderDesmognathus ochrophaeus: Interaction of predator-avoidance and anti-predator mechanisms.Anim. Behav. 47:1–6.

    Article  Google Scholar 

  • Horne, E.A., andJaeger, R.G. 1988. Territorial pheromones of female red-backed salamanders.Ethology 78:143–152.

    Google Scholar 

  • Hurlbert, S.H. 1970. Predator responses to the vermilion-spotted newt (Notophthalmus viridescens).J. Herpetol. 4:47–55.

    Google Scholar 

  • Jacobs, A.J., andTaylor, D.H. 1992. Chemical communication betweenDesmognathus quadramaculatus andDesmognathus monticola.J. Herpetol. 26:93–95.

    Google Scholar 

  • Jaeger, R.G. 1981. Dear enemy recognition and the costs of aggression between salamanders.Am. Nat. 117:962–974.

    Article  Google Scholar 

  • Jaeger, R.G. 1986. Pheromonal markers as territorial advertisement by terrestrial salamanders, pp. 191–203,in D. Duvall, D. Müller-Schwarze, and R.M. Silverstein (eds.). Chemical Signals in vertebrates. Plenum Publishing, New York.

    Google Scholar 

  • Jaeger, R.G. 1988. A comparison of territorial and nonterritorial behavior in two species of salamanders.Anim. Behav. 36:307–310.

    Google Scholar 

  • Jaeger, R.G., andGergits, W.F. 1979. Intra- and interspecific communication in salamanders through chemical signals on the substrate.Anim. Behav. 27:150–156.

    Article  Google Scholar 

  • Keefe, M. 1992. Chemically mediated avoidance behavior in wild brook trout,Salvelinus fontinalis: The response to familiar and unfamiliar predaceous fishes and the influence of fish diet.Can. J. Zool. 70:288–292.

    Google Scholar 

  • Keen, W.H., andReed, R.W. 1985. Territorial defence of space and feeding sites by a plethodontid salamander.Anim. Behav. 33:1119–1123.

    Google Scholar 

  • Keen, W.H., andSharp, S. 1984. Responses of a plethodontid salamander to conspecific and congeneric intruders.Anim. Behav. 32:58–65.

    Google Scholar 

  • Kulzer, E. 1954. Untersuchungen über die Schreckreaktion bei Erdkrötenkaulquappen (Bufo bufo L.).Z. Vergl. Physiol. 36:443–463.

    Article  Google Scholar 

  • Lawrence, J.M. 1991. A chemical alarm response inPycnopodia helianthoides (Echinodermata: Asteroidea).Mar. Behav. Physiol. 19:39–44.

    Google Scholar 

  • Marvin, G.A., andHutchison, V.H. Avoidance response by adult newts (Cynops pyrrhogaster) andNotophthalmus viridescens) to chemical alarm cues. Behaviour. In Press.

  • Mathis, A., andSmith, R.J.F. 1993. Chemical alarm signals increase the survival time of fathead minnows (Pimephales promelas) during encounters with northern pike (Esox lucius).Behav. Ecol. 4:260–265.

    Google Scholar 

  • Mosher, H.S., Fuhrman, F.A., Buchwald, H.D., andFisher, H.G. 1964. Tarichatoxin-tetrodotoxin: a potent neurotoxin.Science 144:1100–1110.

    PubMed  Google Scholar 

  • Parker, D.A., andShulman, M.J. 1986. Avoiding predation: Alarm responses of Caribbean sea urchins to simulated predation on conspecific and heterospecific sea urchins.Mar. Biol. 93:201–208.

    Article  Google Scholar 

  • Petranka, J.W., Kats, L.B., andSih, A. 1987. Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish.Anim. Behav. 35:420–425.

    Google Scholar 

  • Pfeiffer, W. 1966. Die Verbreitung der Schreckreaktion bei Kaulquappen und die Herkunft des Schreckstoffes.Z. Vergl. Physiol. 52:79–98.

    Article  Google Scholar 

  • Rehnberg, B.G., andSchreck, C.B. 1987. Chemosensory detection of predators by coho salmon (Onchorhynchus kisutch): Behavioral reaction and the physiological stress response.Can. J. Zool. 65:481–485.

    Google Scholar 

  • Roudebush, R.E., andTaylor, D.H. 1987. Chemical communication between two species of desmognathine salamanders.Copeia 1987:744–748.

    Google Scholar 

  • Sih, A., andKats, L.B. 1991. Effects of refuge availability on the responses of salamander larvae to chemical cues from predatory green sunfish.Anim. Behav. 42:330–332.

    Google Scholar 

  • Sleeper, H.L., Paul, V.J., andFenical, W. 1980. Alarm pheromones from the marine opisthobranchNavanax inermis.J. Chem. Ecol. 6:57–70.

    Article  Google Scholar 

  • Smith, R.J.F. 1992. Alarm signals in fishes.Rev. Fish Biol. Fish. 2:33–63.

    Article  Google Scholar 

  • Sokal, R.R., andRohlf, F.J. 1981. Biometry: The Principles and Practice of Statistics in Biological Research, 2nd ed. W.H. Freeman, San Francisco.

    Google Scholar 

  • Thoen, C., Bauwens, D., andVerheyen, R.F. 1986. Chemoreceptive and behavioural responses of the common lizardLacerta vivipara to snake chemical deposits.Anim. Behav. 34:1805–1813.

    Google Scholar 

  • Wakely, J.F., Fuhrman, G.J., Fuhrman, F.A., Fisher, H.G., andMosher, H.S. 1966. The occurrence of tetrodotoxin (tarichatoxin) in amphibia and the distribution of the toxin in the organs of newts (Taricha).Toxicon 3:195–203.

    Article  PubMed  Google Scholar 

  • Weldon, P.J. 1983. The evolution of alarm pheromones, pp. 309–312,in D. Müller-Schwarze and R.M. Silverstein (eds.). Chemical Signals in Vertebrates 3. Plenum Press, New York.

    Google Scholar 

  • Weldon, P.J. 1990. Responses by vertebrates to chemicals from predators, pp. 500–521,in D.W. MacDonald, D. Müller-Schwarze, and S.E. Natynczuk (eds.). Chemical Signals in Vertebrates 5. Oxford University Press, Oxford.

    Google Scholar 

  • Wilson, D.J., andLefcort, H. 1993. The effect of predator diet on the alarm response of redlegged frog,Rana aurora, tadpoles.Anim. Behav. 46:1017–1019.

    Article  Google Scholar 

  • Yotsu, M., Iorissi, M., andYasumoto, T. 1990. Distribution of tetrodotoxin, 6-epitetrodotoxin, and 11-deoxytetrodotoxin in newts.Toxicon 28:238–241.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutterschmidt, W.I., Marvin, G.A. & Hutchison, V.H. Alarm response by a plethodontid salamander (Desmognathus ochrophaeus): Conspecific and heterospecific “Schreckstoff”. J Chem Ecol 20, 2751–2759 (1994). https://doi.org/10.1007/BF02098387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02098387

Key words

Navigation