Skip to main content
Log in

Geometry of the string equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The string equations of hermitian and unitary matrix models of 2D gravity are flatness conditions. These flatness conditions may be interpreted as the consistency conditions for isomonodromic deformation of an equation with an irregular singularity. In particular, the partition function of the matrix model is shown to be the tau function for isomonodromic deformation. The physical parameters defining the string equation are interpreted as moduli of meromorphic gauge fields, and the compatibility conditions can be interpreted as defining a “quantum” analog of a Riemann surface. In the latter interpretation, the equations may be viewed as compatibility conditions for transport on “quantum moduli space” of correlation functions in a theory of free fermions. We discuss how the free fermion field theory may be deduced directly from the matrix model integral. As an application of our formalism we discuss some properties of the BMP solutions of the string equations. We also mention briefly a possible connection to twistor theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brézin, E., Kazakov, V.: Exactly solvable field theories of closed strings. Phys. Lett.B236, 144 (1990)

    Article  Google Scholar 

  2. Douglas, M., Shenker, S.: String in less than one dimension. Rutgers preprint RU-89-34

  3. Gross, D., Migdal, A.: Nonperturbative two dimensional quantum gravity. Phys. Rev. Lett.64, 127 (1990)

    Article  Google Scholar 

  4. Gross, D., Migdal, A.: A nonperturbative treatment of two-dimensional quantum gravity. Princeton preprint PUPT-1159 (1989)

  5. Douglas, M.: Strings in less one dimension and the generalized KdV hierarchies. Rutgers preprint RU-89-51

  6. Banks, T., Douglas, M., Seiberg, N., Shenker, S.: Microscopic and macroscopic loops in non-perturbative two dimensional gravity. Rutger preprint RU-89-50

  7. Witten, E.: On the structure of the topological phase of two dimensional gravity. Preprint IASSNS-HEP-89/66

  8. Distler, J.: 2D quantum gravity, topological field theory and multicritical matrix models. Princeton preprint PUPT-1161

  9. Dijkgraaf, R., Witten, E.: Mean field theory, topological field theory, and multimatrix models. IASSNS-HEP-90/18; PUPT-1166

  10. Verlinde, E., Verlinde, H.: A solution of two dimensional topological quantum gravity. Preprint IASSNS-HEP-90/40

  11. Friedan, D., Shenker, S.: The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B281, 509 (1987); Friedan, D.: A new formulation of string theory. Physica Scripta T15, 72 (1987)

    Article  Google Scholar 

  12. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformations groups for soliton equations. I. Proc. Jpn. Acad.57A, 342 (1981); Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformations groups for soliton equations. II. Ibid. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformations groups for soliton equations I. Proc. Jpn. Acad.57A, 387; III. J. Phys. Soc. Jpn.50, 3806 (1981); IV. Physica4D, 343 (1982); V. Publ. RIMS, Kyoto University18, 1111 (1982); VI. J. Phys. Soc. Jpn.50, 3813 (1981); VII. Publ. RIMS, Kyoto University18, 1077 (1982)

    Google Scholar 

  13. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. I.H.E.S.61, 1 (1985)

    Google Scholar 

  14. Frenkel, I.: Representations of affine Lie algebras, hecke modular forms, and Korteweg-de Vries type equations. Proceedings of the 1981 Rutgers Conference on Lie Algebras and related topics. Lecture Notes in Mathematics, vol. 933, p. 71. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  15. Flaschka, H., Newell, A.: Monodromy and spectrum-preserving deformations. I. Commun. Math. Phys.76, 65 (1980)

    Article  Google Scholar 

  16. Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. Australian National University preprint; Trieste preprints, IC/89/120,107,139

  17. Martinec, E.: Private communication

  18. Drinfeld, Sokolov: Equations of Korteweg-de Vries type and simple Lie algebras. Sov. J. Math. 1975 (1985)

  19. Gelfand, I.M., Dickii, L.A.: Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-De Vries equations. Russian Math. Surv.30, 77 (1975)

    Google Scholar 

  20. Periwal, V., Shevitz, D.: Unitary-matrix models as exactly solvable string theories. Phys. Rev. Lett.64, 1326 (1990)

    Article  Google Scholar 

  21. Crnkovic, C., Douglas, M., Moore, G.: To appear

  22. Kutasov, D., Di Francesco. Ph.: Unitary minimal models coupled to 2D quantum gravity. Princeton preprint, PUPT-1173

  23. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351 (1989)

    Article  Google Scholar 

  24. Ginsparg, P., Goulian, M., Plesser, M.R., Zinn-Justin, J.: (p,q) string actions. Harvard preprint HUTP-90/A015;SPhT/90-049

  25. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with radional coefficients. Physica2D, 306 (1981)

    Google Scholar 

  26. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with radional coefficients. II. Physica2D, 407 (1981)

    Google Scholar 

  27. Sato, M., Miwa, T., Jimbo, M.: Aspects of holonomic quantum fields isomonodromic deformation and Ising model. In: Complex Analysis, Microlocal Calculus and Relativistic Quantum Theorey. Iagolnitzer, D. (ed.). Lecture Notes in Physics, vol. 126. Berlin, Heidelberg, New York: Springer

  28. Jimbo, M.: Introduction to holonomic quantum fields for mathematicians. Proc. Symp. Pure Math.49, part I. 379 (1989)

    Google Scholar 

  29. Its, A., Novokshenov, V.Yu.: The isomonodromic deformation method in the theory of Painlevé equations. Lecture Notes Mathematics, vol. 1191. Berlin, Heidelberg, New York: Springer

  30. Kapaev, A.: Asymptotics of solutions of the Painlevé equation of the first kind. Differential Equations24, 1107 (1988)

    Google Scholar 

  31. Miwa, T.: Painlevé property of monodromy preserving deformation equations and the analytic of τ functions. Publ. Res. Inst. Math. Sci.17, 703 (1981)

    Google Scholar 

  32. Brezin, E., Marinari, E., Parisi, G.: A non-perturbative ambiguity free solution of a string model. Preprint ROM2F-90-09

  33. David, F.: Loop equations and non-perturbative effects in two-dimensional quantum gravity. Preprint SPhT/90-043

  34. Its, A.R., Novokshenov, V.Yu.: Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations. Funct. Anal. Appl.22, 190 (1988)

    Article  Google Scholar 

  35. Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Interscience 1965

    Google Scholar 

  36. Sibuya, Y.: Stokes phenomena. Bull. Am. Math. Soc.83, 1075 (1977)

    Google Scholar 

  37. Malgrange, B.: La classification des connexions irréguliers á une variable. In: Mathématique et Physique: Sém École Norm. Sup. 1979–1982. Basel: Birkhäuser 1983

    Google Scholar 

  38. Jurkat, W.: Meromorphe Differentialgleichungen. Lecture Notes in Mathematics, vol. 637. Berlin, Heidelberg, New York: Springer

  39. Babbitt, D., Varadarajan, V.: Local moduli for meromorphic differential equations. Bull. Am. Math. Soc.72, 95 (1985)

    Google Scholar 

  40. Babitt, D., Varadarajan, V.: Deformations of nilpotent matrices over rings and reduction of analytic families of meromorphic differential equations. Mem. Am. Math. Soc.55, 1 (1985)

    Google Scholar 

  41. Varadarajan, V.: Recent progress in differential equations in the complex domain. Preprint

  42. Majima, J.: Asymptotic analysis for integrable connections with irregular singular points. Lecture Notes in Mathematics, vol. 1075. Berlin, Heidelberg, New York: Springer

  43. Dubrovin, Matveev, Novikov: Non-linear equations of Korteweg-De Vries type, finite-zone linear operators, and abelian varieties. Russ. Math. Surveys31, 59 (1976)

    Google Scholar 

  44. Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations. Proceedings of symposium on algebraic geometry. Nagata, M. (ed.) Kinokuniya, Tokyo, 1978

    Google Scholar 

  45. Abramowitz, M., Stegun, J.: Handbook of mathematical functions. Dover

  46. Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum field theory. II. Publ. RIMS15, 201 (1979)

    Google Scholar 

  47. Miwa, T.: Clifford operators and Riemann's monodromy problem. Publ. Res. Inst. Math. Sci.17, 665 (1981)

    Google Scholar 

  48. Zamalodchikov, Al.B.: Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions. Nucl. Phys. B285, 481 (1987)

    Article  Google Scholar 

  49. Bershadsky, M., Radul, A.: Conformal field theories with additionalZ N symmetry. Int. J. Mod. Phys.A2, 165 (1987)

    Article  Google Scholar 

  50. Dixon, L., Friedan, D., Martinec, E., Shenker, S.: The conformal field theory of Orbifolds. Nucl. Phys. B282, 13 (1987)

    Article  Google Scholar 

  51. Hamidi, S., Vafa, C.: Interactions on Orbifolds. Nucl. Phys. B279, 465 (1987)

    Article  Google Scholar 

  52. Barouch, E., McCoy, B.M., Wu, T.T.: Phys. Rev. Lett.31, 1409 (1973); Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Phys. Rev. B13, 316 (1976)

    Article  Google Scholar 

  53. Witten, E.: Conformal field theory, Grassmanians, and algebraic curves. Commun. Math. Phys.113, 189 (1988)

    Article  Google Scholar 

  54. Palmer, J.: Determinants of Cauchy-Riemann operators as τ-functions. Univ. of Arizona preprint; The tau function for Cauchy-Riemann operators onS 2. Unpublished letter to C. Tracey

  55. Mehta, M.L.: Random matrices. New York: Academic Press 1967

    Google Scholar 

  56. See Sect. 10.3 in Itzykson, C. and Drouffe, J.-M.: Statistical field theory, vol. 2. Cambridge: Cambridge Univ. Press 1989

    Google Scholar 

  57. Jimbo, M., Miwa, T., Mori, Y., Sato, M.: Density matrix of an impenetrable bose gas and the fifth Painlevé transcendent. Physica1D, 80 (1980)

    Google Scholar 

  58. Morozov, A., Shatashvili, S.: Private communications, Nov. 1989, and Dec. 1989

  59. Moore, G., Seiberg, N.: Lectures of RCFT. Preprint RU-89-32; YCTP-P13-89

  60. Brezin, E., Marinari, E., Parisi, G.: A non-perturbative ambiguity free solution of a string model. ROM2F-90-09

  61. Douglas, M., Seiberg, N., Shenker, S.: Flow and instability in quantum gravity. Rutgers preprint, RU-90-19

  62. See reference [29], Its, A., Novokshenov, V.Yu.: The isomonodromic deformation method in the theory of Painlevé equations. Lecture Notes Mathematics, vol. 1191. Berlin, Heidelberg, New York: Springer especially, Chap. 5

  63. Crnkovic, C., Ginsparg, P., Moore, G.: The Ising model, the Yang-Lee edge singularity, and 2D quantum gravity. Phys. Lett.237B, 196 (1990)

    Google Scholar 

  64. Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation. Arch. Rat. Mech. Anal.73, 31 (1980)

    Article  Google Scholar 

  65. Mason, Sparling: Nonlinear Schrödinger and Korteweg-De Vries are reductions of self-dual Yang-Mills. Phys. Lett.137A, 29 (1989)

    Google Scholar 

  66. Belavin, A., Zakharov, V.: Yang-Mills equations as inverse scattering problem. Phys. Lett.73B, 53 (1978)

    Google Scholar 

  67. Atiyah, M.F.: Collected works, vol. 5. Oxford: Clarendon press 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Yu. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, G. Geometry of the string equations. Commun.Math. Phys. 133, 261–304 (1990). https://doi.org/10.1007/BF02097368

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097368

Keywords

Navigation