Advertisement

International Journal of Thermophysics

, Volume 16, Issue 4, pp 867–876 | Cite as

Viscosity of saturated R152a measured with a vibrating wire viscometer

  • P. S. van der Gulik
Article

Abstract

Earlier reported values of the viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) have been recalculated with an improved value for the mechanical damping of the vibrating wire viscometer. The measurements were taken along the saturation line both in the saturated liquid and in the saturated vapor every 10 K from 243 up to 393 K by means of a vibrating wire viscometer The damping of the vibration of the wire is a measure for the viscosity provided that the mechanical damping is subtracted. The latter is usually measured in vacuum. It turns out that the damping value measured in this way depends on the vacuum pressure and on the way the wire has been handled before. It appeared that the damping applied previously, measured after 6 days of pumping, is too small, resulting in values of the viscosity coefficient which are too large. The effect on the data for the saturated-liquid viscosity is small, but the new saturated-vapor viscosity data agree much better with the unsaturated-vapor data reported by Takahashi et al.

Key words

1,1-difluoroethane mechanical damping R152a refrigerants vibrating wire viscometer viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. van der Gulik,Int. J. Thermophys. 14:851 (1993).Google Scholar
  2. 2.
    M. Takahashi, C. Yokoyama, and S. Takahashi,J. Chem. Eng. Data 32:98 (1987).Google Scholar
  3. 3.
    N. J. Trappeniers, P. S. van der Gulik, and H. van den Hooff,Chem. Phys. Lett. 70:438 (1980).Google Scholar
  4. 4.
    P. S. van der Gulik and N. J. Trappeniers,Physica A 135:1 (1986).Google Scholar
  5. 5.
    R. Mostert, P. S. van der Gulik, and H. R. van den Berg,Physica A 156:909 (1989).Google Scholar
  6. 6.
    P. S. van der Gulik, inExperimental Thermodynamics, Vol. III. Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (IUPAC, Blackwell Scientific, Oxford, 1991), p. 79.Google Scholar
  7. 7.
    Y. Higashi, M. Ashizawa, Y. Kabata, T. Majima, M. Uematsu, and K. Watanabe,JSME Int. J. 30:1106 (1987).Google Scholar
  8. 8.
    T. Tamatsu, H. Sato, and K. Watanabe,Int. J. Refrig. 16:347 (1993).Google Scholar
  9. 9.
    E. N. da C. Andrade,Phil. Mag. 17:698 (1934).Google Scholar
  10. 10.
    P. S. van der Gulik, R. Mostert, and H. R. van den Berg,Physica A 151:153 (1988).Google Scholar
  11. 11.
    P. S. van der Gulik, R. Mostert, and H. R. van den Berg,High Temp-High Press 23:87 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • P. S. van der Gulik
    • 1
  1. 1.Van der Waals-Zeeman LaboratoryUniversity of AmsterdamXE AmsterdamThe Netherlands

Personalised recommendations