Skip to main content
Log in

Human cytochromec oxidase during cardiac growth and development

  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Summary

Human heart mitochondrial cytochromec oxidase specific content and specific activity was measured in five fetuses 15–21 weeks gestational age and in five patients whose age ranged from 6 days to 22 years. None had evidence of cardiac pathology. An increase in cytochromec oxidase specific content and specific activity was observed in the fetal heart with increasing gestational age (0.13–0.38 nmol hemea/mg protein and 67–295 nmol O2 utilized/min/mg protein) and from the neonatal period (0.35 nmol hemea/mg protein and 140 nmol O2/min/mg protein) to adulthood (1.2 nmol hemea/mg protein and 1104 nmol O2/min/mg protein). A marked increase was observed postnatally between 4 and 19 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dowhan W, Bibus CR, Schatz G (1985) The cytoplasmically-made subunit IV is necessary for assembly of cytochromec oxidase in yeast.EMBO J 4:179–184

    PubMed  Google Scholar 

  2. Ferguson-Miller S, Brautigan DL, Margoliash E (1976) Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromesc with binding to mitochondrial cytochromec oxidase.J Biol Chem 251:1104–1115

    PubMed  Google Scholar 

  3. Ferguson-Miller S, Brautigan DL, Margoliash E (1978) Definition of cytochromec binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochromec oxidase.J Biol Chem 253:149–159

    PubMed  Google Scholar 

  4. Glatz JFC, Veerkamp JH (1982) Postnatal development of palmitate oxidation and mitochondrial enzyme activities in rat cardiac and skeleton muscle.Biochim Biophys Acta 711:327–335

    PubMed  Google Scholar 

  5. Hallman M (1971) Changes in mitochondrial respiratory chain proteins during perinatal development. Evidence of the importance of environmental oxygen tension.Biochim Biophys Acta 253:360–372

    PubMed  Google Scholar 

  6. Hare JF, Chiang E, Attardi G (1980) Isolation, subunit composition, and site of synthesis of human cytochromec oxidase.Biochemistry 19:2023–2030

    PubMed  Google Scholar 

  7. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system.Ann Rev Biochem 54:1015–1069

    PubMed  Google Scholar 

  8. Herrmann H, Tootle ML (1964) Specific and general aspects of the development of enzymes and metabolic pathways.Physiol Rev 44:289–371

    PubMed  Google Scholar 

  9. Kadenbach B (1986) Regulation of respiration and ATP synthesis in higher organisms: hypothesis.J Bioenerg Biomembr 18:39–54

    PubMed  Google Scholar 

  10. Kadenbach B, Merle P (1981) On the function of multiple subunits of cytochromec oxidase from higher eukaryotes.FEBS Lett 135:1–11

    PubMed  Google Scholar 

  11. Kadenbach B, Ungibauer M, Jarausch J, Buge U, Kuhn-Nentwig L (1983) The complexity of respiratory complexes.Trends Biochem Sci 8:398–400

    Google Scholar 

  12. Kadenbach B, Stroh A, Ungibauer M, Kuhn-Nentwig L, Buge U, Jarausch J (1986) Isozymes of cytochrome-c oxidase: characterization and isolation from different tissues.Methods Enzymol 126:32–45

    PubMed  Google Scholar 

  13. Keilin D, Hartree EF (1938) Cytochrome oxidase.Proc Soc Lond [Biol]125:171–186

    Google Scholar 

  14. Kinnula VL, Hassinen I (1977) Effect of hypoxia on mitochondrial mass and cytochrome concentrations in rat heart and liver during postnatal development.Acta Physiol Scand 99:462–466

    PubMed  Google Scholar 

  15. Kuhn-Nentwig L, Kadenbach B (1985) Isolation and properties of cytochrome c oxidase from rat liver and quantification of immunological differences between isozymes from various rat tissues with subunit-specific antisera.Eur J Biochem 149:147–158

    PubMed  Google Scholar 

  16. Lowry DG, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent.J Biol Chem 193:264–275

    Google Scholar 

  17. Mackler B, Grace R, Duncan HM (1971) Studies of mitochondrial development during embryogenesis.Arch Biochem Biophys 144:603–610

    PubMed  Google Scholar 

  18. Saraste M (1983) How complex is a respiratory complex?Trends Biochem Sci 8:139–142

    Google Scholar 

  19. Smith HE, Page E (1976) Morphometry of rat heart mitochondrial subcompartments and membranes: application to myocardial cell atrophy after hypophysectomy.J Ultrastruc Res 55:31–41

    Google Scholar 

  20. Smith HE, Page E (1977) Ultrastructural changes in rabbit heart mitochondria during the perinatal period. Neonatal transition to aerobic metabolism.Dev Biol 57:109–117

    PubMed  Google Scholar 

  21. Sordahl LA, Crow CA, Kraft GH, Schwartz A (1972) Some ultrastructural and biochemical aspects of heart mitochondria associated with development: fetal and cardiomyopathic tissue.J Mol Cell Cardiol 4:1–10

    PubMed  Google Scholar 

  22. Stroh A, Kadenbach B (1986) Tissue-specific and species-specific distribution of -SH groups in cytochrome c oxidase subunits.Eur J Biochem 156:199–204

    PubMed  Google Scholar 

  23. Toth A, Schiebler TH (1967) Uber die Entwicklung der Arbeitsund Erregungs-Leitungsmuskulatur des Herzens von Ratte und Meerschweinchen. Histologische, Histochemiische und Elektrophysiologische Und Meerschweinchen. Histologische, Histochemische und Elektrophysiolgische Untersuchungen.Z Zellforsch Mikrosk Anat 76:543–567

    PubMed  Google Scholar 

  24. van Buuren KJH, Nicholls P, van Gelder BF (1972) Biochemical and biophysical studies on cytochrome aa3. VI. Reaction of cyanide with oxidized and reduced enzyme.Biochim Biophys Acta 256:258–276

    PubMed  Google Scholar 

  25. Veerkamp JH, Glatz JFC, Wagemakers AJM (1985) Metabolic changes during cardiac maturation.Basic Res Cardiol 80(Suppl 2):111–114

    Google Scholar 

  26. Vinogradov AO, King TE (1979) The Keilin-Hartree heart muscle preparation.Methods Enzymol 55:118–127

    PubMed  Google Scholar 

  27. Warshaw JB (1969) Cellular energy metabolism during fetal development. I. Oxidative phosphorylation in the fetal heart.J Cell Biol 42:651–657

    Google Scholar 

  28. Wells RJ, Friedman WF, Sobel BE (1972) Increased oxidative metabolism in the fetal and newborn lamb heart.Am J Physiol 222:1488–1492

    PubMed  Google Scholar 

  29. Werner JC, Whitman V, Musselman J, Schuler HG (1982) Perinatal changes in mitochondrial respiration of the rabbit heart.Biol Neonate 42:208–216

    PubMed  Google Scholar 

  30. Wielburski A, Nelson BD (1984) Hemea induces assembly of rat liver cytochromec oxidase subunits I–III in isolated mitochondria.FEBS Lett 177:291–294

    PubMed  Google Scholar 

  31. Young HH, Shimizu T, Nishioka K, Nakanishi T, Jarmakani JM (1983) Effect of hypoxia and reoxygenation on mitochondrial function in neonatal myocardium.Am J Physiol 245:H998-H1006

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin-Garcia, J., Baskin, L.S. Human cytochromec oxidase during cardiac growth and development. Pediatr Cardiol 10, 212–215 (1989). https://doi.org/10.1007/BF02083295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02083295

Key words

Navigation