Skip to main content

Abstract

Heart disease is one of the commonest abnormalities of the fetus and infant. Malformation of the heart is the commonest congenital malformation and accounts for significant morbidity and mortality in utero and postnatally. This chapter gives a brief overview of cardiac development and extensive discussion of the methods of pathological examination of the heart including histological sampling. Congenital heart disease has a reputation as a particularly difficult area of pathology. With care and following a few simple rules, all but the most complex cases can be confidently tackled. All the commoner forms are described and illustrated together with an account of heart disease in the fetus. The cardiomyopathies are covered in detail, especially mitochondrial and metabolic cardiomyopathy. Myocarditis, ischemia and infarction, tumors, and abnormalities of cardiac rhythm are all discussed in detail. Already many gene mutations have been identified for cardiomyopathy and channelopathies in particular and the commoner defects are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tam PPL, Schoenwolf GC. Cardiac fate maps: lineage allocation, morphogenetic movement and cell commitment. In: Harvey RP, Rosenthal N, editors. Heart development. London: Academic; 1999. p. 3–18.

    Chapter  Google Scholar 

  2. Olson EN, Srivastava D. Molecular pathways controlling heart development. Science. 1996;272:671–6.

    Article  CAS  PubMed  Google Scholar 

  3. Gittenberger de Groot AC, Bartelings MM, Deruiter MC, et al. Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res. 2005;57:169–76.

    Article  PubMed  Google Scholar 

  4. Kirby ML. Molecular embryogenesis of the heart. Pediatr Dev Pathol. 2002;5:516–43.

    Article  PubMed  Google Scholar 

  5. Harvey RP. Patterning of the vertebrate heart. Nat Rev Genet. 2002;3:544–56.

    Article  CAS  PubMed  Google Scholar 

  6. Brown N, Anderson RH. Symmetry and laterality in the human heart: developmental implications. In: Harvey RP, Rosenthal N, editors. Heart development. London: Academic; 1999. p. 447–61.

    Chapter  Google Scholar 

  7. Moorman AFM, Christoffels VM. Cardiac chamber formation: development, genes and evolution. Physiol Rev. 2003;83:1223–67.

    Article  CAS  PubMed  Google Scholar 

  8. Moorman A, Webb S, Brown NA, et al. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart. 2003;89:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol. 2005;243:287–335.

    Article  CAS  PubMed  Google Scholar 

  10. Anderson RH, Webb S, Brown NA, et al. Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart. 2003;89:1110–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wessels A, Markman MWM, Vermeulen JLM, et al. The development of the atrioventricular junction in the human heart. Circ Res. 1996;78:10–117.

    Article  Google Scholar 

  12. Rudolph AM. The fetal circulation and postnatal adaptation. In: Rudolph AM, editor. Congenital diseases of the heart: clinical-physiological considerations. 2nd ed. Armonk: Futura Publishing Co; 2001. p. 3–44.

    Google Scholar 

  13. Kondo M, Itoh S, Kunikata T, et al. Time of closure of ductus venosus in term and preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2001;85:F57–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenquist GC, Sweeny LJ, Amsel J, et al. Enlargement of the membranous ventricular septum: an internal stigma of Down’s syndrome. J Pediatr. 1974;85:490–3.

    Article  CAS  PubMed  Google Scholar 

  15. Van Pragh R. The segmental approach to diagnosis in congenital heart disease. In: Birth defects: original articles series, vol. 8. Baltimore: Williams & Wilkins; 1972. p. 4–23.

    Google Scholar 

  16. Basso C, Burke M, Fornes P, et al. Association for European Cardiovascular Pathology. Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch. 2008;452:11–8.

    Article  PubMed  Google Scholar 

  17. Goyal VK. Early appearance and rate of lipofuscin pigment accumulation in human myocardium. Exp Gerontol. 1981;16:219–22.

    Article  CAS  PubMed  Google Scholar 

  18. Pesonen E. Extrinsic and intrinsic factors relating to intimal thickening in children. Acta Paediatr Suppl. 2004;446:43–7.

    Google Scholar 

  19. DeSa DJ. Coronary artery ruptures in stillbirths. Pediatr Dev Pathol. 2002;5:605.

    Google Scholar 

  20. Loukas M, Abel M, Tubbs RS, et al. The cardiac lymphatic system. Clin Anat. 2011;24:684–91.

    Article  PubMed  Google Scholar 

  21. Pryce JW, Bamber AR, Ashworth MT, et al. Reference ranges for organ weights of infants at autopsy: results of >1,000 consecutive cases from a single centre. BMC Clin Pathol. 2014;14:18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hill DA, Swanson PE. Myocardial extramedullary haematopoiesis: a clinicopathologic study. Mod Pathol. 2000;13:779–87.

    Article  CAS  PubMed  Google Scholar 

  23. Rowlatt UF, Rimoldi HJA, Lev M. The quantitative anatomy of the normal child’s heart. Pediatr Clin N Am. 1963;10:499–588.

    Article  Google Scholar 

  24. Eckner FAO, Brown BW, Davidson DL, et al. Dimensions of normal human hearts. Arch Pathol Lab Med. 1969;88:497–507.

    CAS  Google Scholar 

  25. Jordan SC, Scott O. Incidence, aetiology and recurrence of congenital heart disease. In: Jordan SC, Scott O, editors. Heart disease in paediatrics. 3rd ed. Oxford: Butterworth Heniemann; 1989. p. 3–9.

    Chapter  Google Scholar 

  26. Arey JB. Malformations of the ventricular septum. In: Arey JB, editor. Cardiovascular pathology in infants and children. Philadelphia: WB Saunders Company; 1984. p. 77–111.

    Google Scholar 

  27. Anderson RH, Lennox CC, Zuberbuhler JR. The morphology of ventricular septal defects. Perspect Pediatr Pathol. 1984;8:235–68.

    CAS  PubMed  Google Scholar 

  28. Alpert BS, Cook DH, Varghese, et al. Spontaneous closure of small ventricular septal defects: ten year follow up. Pediatrics. 1979;63:204–6.

    Article  CAS  PubMed  Google Scholar 

  29. Becker AE, Anderson RH. Atrioventricular septal defects. What’s in a name? J Thorac Cardiovasc Surg. 1982;83:461–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rastelli G, Kirklin JW, Titus JL. Anatomic observations on complete form of persistent common atrioventricular canal with special reference to atrioventricular valves. Mayo Clin Proc. 1966;41:296.

    CAS  PubMed  Google Scholar 

  31. Anderson RH, Ho SY, Falcao S. The diagnostic features of atrioventricular septal defect with common atrioventricular orifice. Cardiol Young. 1998;8:33–49.

    Article  CAS  PubMed  Google Scholar 

  32. Thiene G, Wenink ACG, Frescura C, et al. The surgical anatomy of the conduction tissues in atrioventricular defects. J Thorac Cardiovasc Surg. 1981;82:928–37.

    Article  CAS  PubMed  Google Scholar 

  33. Weintraub RG, Brawn WJ, Venables AW, et al. Two patch repair of complete atrioventricular septal defect in the first year of life: results and sequential assessment of atrioventricular valve function. J Thorac Cardiovasc Surg. 1990;99:320–6.

    Article  CAS  PubMed  Google Scholar 

  34. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent oval foramen during the first decades of life; an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:1489–94.

    Google Scholar 

  35. Fisher DC, Fisher EA, Budd JH, et al. The incidence of patent oval foramen in 1,000 consecutive patients. A contrast transesophageal echocardiography study. Chest. 1995;107:1504–9.

    Article  CAS  PubMed  Google Scholar 

  36. Lee ME, Sade RM. Coronary sinus septal defect. Surgical considerations. J Thorac Cardiovasc Surg. 1979;78:563–9.

    Article  CAS  PubMed  Google Scholar 

  37. Al Zaghal AM, Li J, Anderson RH, et al. Anatomic criteria for the diagnosis of sinus venosus defects. Heart. 1997;78:298–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silver MM, Freedom RM, Silver MD, et al. The morphology of the human newborn ductus arteriosus: a reappraisal of its structure and closure with special reference to prostaglandin E1. Hum Pathol. 1981;12:1123–36.

    Article  CAS  PubMed  Google Scholar 

  39. Rudolph AM. The ductus arteriosus and persistent patency of the ductus arteriosus. In: Rudolph AM, editor. Congenital diseases of the heart: clinical-physiological considerations. 2nd ed. Armonk: Futura Publishing Co; 2001. p. 155–96.

    Google Scholar 

  40. Schiessl B, Schneider KT, Zimmerman A, et al. Prenatal constriction of the fetal ductus arteriosus—related to maternal pain medication. Z Geburtshilfe Neonatol. 2005;209:65–8.

    Article  CAS  PubMed  Google Scholar 

  41. Tynan M. The ductus arteriosus and its closure. N Engl J Med. 1993;329:1570–2.

    Article  CAS  PubMed  Google Scholar 

  42. Bancalari E. Changes in the pathogenesis and prevention of chronic lung disease of prematurity. Am J Perinatol. 2001;18:1–9.

    Article  CAS  PubMed  Google Scholar 

  43. Lund JT, Hansen D, Brocks V, et al. Aneurysm of the ductus arteriosus in the neonate: three case reports with a review of the literature. Pediatr Cardiol. 1992;13:222–6.

    Article  CAS  PubMed  Google Scholar 

  44. Pellegrino A, Deverall PB, Anderson RH, et al. Aortic coarctation in the first three months of life. Anatomopathological study with respect to treatment. J Thorac Cardiovasc Surg. 1985;89:121–7.

    Article  CAS  PubMed  Google Scholar 

  45. Becker AE, Becker MJ, Edwards JE. Anomalies associated with coarctation of the aorta. Particular reference to infancy. Circulation. 1970;41:1067–75.

    Article  CAS  PubMed  Google Scholar 

  46. Elzenga NJ, Gittenberger de Groot AC. Localised coarctation of the aorta. An age dependent spectrum. Br Heart J. 1983;49:317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Russell GA, Berry PJ, Watterson K, et al. Patterns of ductal tissue in coarctation of the aorta in the first three months of life. J Thorac Cardiovasc Surg. 1991;102:368–9.

    Article  Google Scholar 

  48. Daubeney PE, Delaney DJ, Anderson RH, et al. Pulmonary atresia with intact ventricular septum: range of morphology in a population based study. J Am Coll Cardiol. 2002;39:1670–9.

    Article  PubMed  Google Scholar 

  49. Gittenberger de Groot AC, Erlap I, Lie-Venema H, et al. Development of the coronary vasculature and its implications for coronary abnormalities in general and specifically in pulmonary atresia without ventricular septal defect. Acta Pediatr Suppl. 2004;93:13–9.

    Article  CAS  Google Scholar 

  50. Stamm C, Anderson RH, Ho YS. Clinical anatomy of the normal pulmonary root compared with that in isolated pulmonary valvular stenosis. J Am Coll Cardiol. 1998;31:1420–5.

    Article  CAS  PubMed  Google Scholar 

  51. Sreeram N, Kitchener D, Smith A. Spectrum of valvular abnormalities in Noonan’s syndrome – a pathologic study. Cardiol Young. 1994;4:62–6.

    Article  Google Scholar 

  52. Anderson RH, Allwork SP, Ho SY, et al. Surgical anatomy of tetralogy of Fallot. J Thorac Cardiovasc Surg. 1981;81:887–96.

    Article  CAS  PubMed  Google Scholar 

  53. Emmanouilides GC, Thanopoulos B, Siassi B, et al. Agenesis of ductus arteriosus associated with the syndrome of tetralogy of Fallot and absent pulmonary valve. Am J Cardiol. 1976;37:403–9.

    Article  Google Scholar 

  54. Zhao HX, Miller DC, Reitz BA, et al. Surgical repair of tetralogy of Fallot. Long term follow up with particular emphasis on late death and reoperation. J Thorac Cardiovasc Surg. 1985;89:204–20.

    Article  CAS  PubMed  Google Scholar 

  55. Liao PK, Edwards WD, Julsrud PR, et al. Pulmonary blood supply in patients with pulmonary atresia and ventricular septal defect. J Am Coll Cardiol. 1985;6:1343–50.

    Article  CAS  PubMed  Google Scholar 

  56. Edwards JE. Pathology of left ventricular outflow tract obstruction. Circulation. 1965;31:586–99.

    Article  CAS  PubMed  Google Scholar 

  57. McKay R, Smith A, Leung MP, et al. Morphology of the ventriculoaortic junction in critical aortic stenosis. Implications for hemodynamic function and clinical management. J Thorac Cardiovasc Surg. 1992;104:434–42.

    Article  CAS  PubMed  Google Scholar 

  58. Bartram U, Bartelings MM, Kramer HH, et al. Congenital polyvalvar disease: a review. Pediatr Cardiol. 2001;22:93–101.

    Article  CAS  PubMed  Google Scholar 

  59. Peterson TA, Todd DB, Edwards JE. Supravalvular aortic stenosis. J Thorac Cardiovasc Surg. 1965;50:734–41.

    Article  CAS  PubMed  Google Scholar 

  60. Van Son JAM, Edwards WD, Danielson GK. Pathology of coronary arteries, myocardium and great arteries in supravalvular aortic stenosis. Report of five cases with implications for surgical treatment. J Thorac Cardiovasc Surg. 1994;108:21–8.

    Article  PubMed  Google Scholar 

  61. Salmon AP. Hypoplastic left heart syndrome – outcome and management. Arch Dis Child. 2001;85:450–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Connor WN, Cash JB, Cottrill CM. Ventriculocoronary connections in hypoplastic left hearts: an autopsy microscopic study. Circulation. 1992;66:1078–86.

    Article  Google Scholar 

  63. Sauer U, Gittenberger de Groot AC, Geishauser M, et al. Coronary arteries in the hypoplastic left heart syndrome. Histopathologic and histometrical study and implications for surgery. Circulation. 1989;80:I 168–76.

    CAS  Google Scholar 

  64. Elzenga NJ, Gittenberger de Groot AC. Coarctation and related aortic arch anomalies in hypoplastic left heart syndrome. Int J Cardiol. 1985;8:379–93.

    Article  CAS  PubMed  Google Scholar 

  65. Allwork SP, Bentall HH, Becker AE, et al. Congenitally corrected transposition of the great arteries: morphologic study of 32 cases. Am J Cardiol. 1976;38:910–23.

    Article  CAS  PubMed  Google Scholar 

  66. Yacoub MH, Radley Smith R. Anatomy of the coronary arteries in transposition of the great arteries and methods of their transfer in anatomical correction. Thorax. 1978;33:418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anderson RH, Henry GW, Becker AE. Morphologic aspects of complete transposition. Cardiol Young. 1991;1:41.

    Article  CAS  PubMed  Google Scholar 

  68. Collett RW, Edwards JE. Persistent truncus arteriosus: a classification according to anatomic types. Surg Clin N Am. 1949;29:1245–70.

    Article  CAS  PubMed  Google Scholar 

  69. de la Cruz MV, Cayre R, Angelini P, et al. Coronary arteries in truncus arteriosus. Am J Cardiol. 1990;66:1482–6.

    Article  PubMed  Google Scholar 

  70. Anderson RH, Becker AE, Tynan M, et al. The univentricular atrioventricular connection: getting to the root of a thorny problem. Am J Cardiol. 1984;54:822–8.

    Article  CAS  PubMed  Google Scholar 

  71. Anderson RH, McCarthy K, Cook AC. Double outlet right ventricle. Cardiol Young. 2001;11:329.

    Article  CAS  PubMed  Google Scholar 

  72. DeLisle G, Ando M, Calder AL, et al. Total anomalous pulmonary venous connection: report of 93 autopsied cases with emphasis on diagnostic and surgical considerations. Am Heart J. 1976;91:99–122.

    Article  CAS  PubMed  Google Scholar 

  73. Neill CA, Ferencz C, Sabiston DC, et al. The familial occurrence of hypoplastic right lung with systemic arterial supply and venous drainage. “scimitar syndrome”. Bull Johns Hopkins Hosp. 1960;107:1–15.

    CAS  PubMed  Google Scholar 

  74. Sun C-CJ, Doyle T, Ringel RE. Pulmonary vein stenosis. Hum Pathol. 1995;26:880–6.

    Article  CAS  PubMed  Google Scholar 

  75. Fong LV, Anderson RH, Park SC, et al. Morphologic features of stenosis of the pulmonary veins. Am J Cardiol. 1988;62:1136–8.

    Article  CAS  PubMed  Google Scholar 

  76. Anderson RK, Lie JT. Pathologic anatomy of Ebstein’s anomaly of the heart revisited. Am J Cardiol. 1978;41:739–45.

    Article  CAS  PubMed  Google Scholar 

  77. Rosenquist GC, Sweeny LJ, McAllister HA. Relationship of the tricuspid valve to the membranous septum in Down’s syndrome without endocardial cushion defect: study of 28 specimens, 14 with a ventricular septal defect. Am Heart J. 1975;90:458–62.

    Article  CAS  PubMed  Google Scholar 

  78. Rigby ML, Carvalho JS, Anderson RH, et al. The investigation and diagnosis of tricuspid atresia. Int J Cardiol. 1990;27:1–17.

    Article  CAS  PubMed  Google Scholar 

  79. Uhl HSM. A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. Bull Johns Hopkins Hosp. 1952;91:197–209.

    CAS  PubMed  Google Scholar 

  80. Corazza G, Soliani M, Bava GL. Uhl’s anomaly in a newborn. Eur J Pediatr. 1981;137:347–52.

    Article  CAS  PubMed  Google Scholar 

  81. Basso C, Bauce B, Corrado D, et al. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2012;9:223–33.

    Article  CAS  Google Scholar 

  82. Macartney FJ, Zuberbuhler JR, Anderson RH. Morphological considerations pertaining to recognition of atrial isomerism. Consequences for sequential chamber localisation. Br Heart J. 1980;44:657–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Melhuish BPP, Van Pragh R. Juxtaposition of the atrial appendages. A sign of severe cyanotic congenital heart disease. Br Heart J. 1968;30:269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yetman AT, McCrindle BW, McDonald C, et al. Myocardial bridging in children with cardiomyopathy – a risk factor for sudden death. N Engl J Med. 1998;339:1201–9.

    Article  CAS  PubMed  Google Scholar 

  85. Becker AE. Variations of the main coronary arteries. In: Becker AE, Losekoot TG, Marcellettti C, Anderson RH, editors. Paediatric cardiology, vol. 3. Edinburgh: Churchill Livingstone; 1981. p. 263–77.

    Google Scholar 

  86. Neufeld HN, Schneeweiss A. Congenital variations of coronary arteries. In: Neufeld HN, Schneeweiss A, editors. Coronary artery diseases in infants and children. Philadelphia: Lea & Febiger; 1983. p. 65–78.

    Google Scholar 

  87. Ness MJ, McManus BM. Anomalous right coronary origin in otherwise unexplained infant death. Arch Pathol Lab Med. 1988;112:626–9.

    CAS  PubMed  Google Scholar 

  88. Kimbiris D, Iskandrian AS, Segal BL, et al. Anomalous aortic origin of coronary arteries. Circulation. 1978;58:606–15.

    Article  CAS  PubMed  Google Scholar 

  89. Arey JB. Malformations of the coronary vessels. In: Arey JB, editor. Cardiovascular pathology in infants and children. Philadelphia: WB Saunders Company; 1984. p. 204–17.

    Google Scholar 

  90. Buirsky G, Jordan SC, Joffe HS, et al. Superior vena caval abnormalities: their occurrence rate, associated cardiac abnormalities and angiographic classification in a paediatric population with congenital heart disease. Clin Radiol. 1986;37:131–8.

    Article  Google Scholar 

  91. Cantrell JR, Haller JA, Ravitch MM. A syndrome of congenital defects involving the abdominal wall, sternum, diaphragm, pericardium and heart. Surg Gynecol Obstet. 1958;107:602–14.

    CAS  PubMed  Google Scholar 

  92. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  PubMed  Google Scholar 

  93. Gill HK, Splitt M, Sharland GK, et al. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detailed fetal echocardiography. J Am Coll Cardiol. 2003;42:923–9.

    Article  PubMed  Google Scholar 

  94. Poon LC, Huggon IC, Zidere V, et al. Tetralogy of Fallot in the fetus in the current era. Ultrasound Obstet Gynecol. 2007;29:625–7.

    Article  CAS  PubMed  Google Scholar 

  95. Rodriguez JG, Holmes R, Martin R, et al. Prognosis following prenatal diagnosis of heart malformations. Early Hum Dev. 1998;52:13–20.

    Article  CAS  PubMed  Google Scholar 

  96. Hornberger LK, Sanders SP, Azaria JJT, et al. Left heart obstructive lesions and left ventricular growth in the midtrimester fetus: a longitudinal study. Circulation. 1995;92:1531–8.

    Article  CAS  PubMed  Google Scholar 

  97. Yamamoto Y, Hornberger LK. Progression of outflow tract obstruction in the fetus. Early Hum Dev. 2012;88:279–85.

    Article  PubMed  Google Scholar 

  98. Maeno YV, Boutin C, Hornberger LK, et al. Prenatal diagnosis of right ventricular outflow tract obstruction with intact ventricular septum, and detection of ventriculocoronary connections. Heart. 1999;81:661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chew C, Halliday JL, Riley MM. Population based study of antenatal detection of congenital heart disease by ultrasound examination. Ultrasound Obstet Gynecol. 2007;29:619–24.

    Article  CAS  PubMed  Google Scholar 

  100. Allan LD, Sharland GK, Milburn A, et al. Prospective diagnosis of 1,006 consecutive cases of congenital heart disease in the fetus. J Am Coll Cardiol. 1994;23:1452–8.

    Article  CAS  PubMed  Google Scholar 

  101. Hoffman JIE. Incidence of congenital heart disease, II: prenatal incidence. Pediatr Cardiol. 1995;16:155–65.

    Article  CAS  PubMed  Google Scholar 

  102. Eronen M. Outcome of fetuses with heart disease diagnosed in utero. Arch Dis Child. 1997;77:F41–6.

    Article  CAS  Google Scholar 

  103. Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116:e833–8.

    Article  PubMed  Google Scholar 

  104. Corrigan N, Brazil DP, McAuliffe F. Fetal cardiac effects of maternal hyperglycemia during pregnancy. Birth Defects Res A Clin Mol Teratol. 2009;85:523–30.

    Article  CAS  PubMed  Google Scholar 

  105. Yates RS. The influence of prenatal diagnosis on postnatal outcome in patients with structural congenital heart disease. Prenat Diagn. 2004;24:1143–9.

    Article  PubMed  Google Scholar 

  106. Allan LD. Rationale for and current status of prenatal cardiac intervention. Early Hum Dev. 2012;88:287–90.

    Article  PubMed  Google Scholar 

  107. Donofrio MT, Duplessis AJ, Limperopoulos C. Impact of congenital heart disease on fetal brain development and injury. Curr Opin Pediatr. 2011;23:502–11.

    Article  PubMed  Google Scholar 

  108. McQuillen PS, Miller SP. Congenital heart disease and brain development. Ann N Y Acad Sci. 2010;1184:68–86.

    Article  CAS  PubMed  Google Scholar 

  109. Simchen MJ, Toi A, Silver M, et al. Fetal cardiac calcifications: report of four prenatally diagnosed cases and review of the literature. Ultrasound Obstet Gynecol. 2006;27:325–30.

    Article  CAS  PubMed  Google Scholar 

  110. McFadden DE, Taylor GP. Cardiac abnormalities and nonimmune hydrops fetalis: coincidental, not causal, relationship. Pediatr Pathol. 1989;9:11–7.

    Article  CAS  PubMed  Google Scholar 

  111. Siven M, Ley D, Hagerstrand I, et al. Agenesis of the ductus venosus and its correlation to hydrops fetalis and the hepatic fetal circulation: case reports and review of the literature. Pediatr Pathol Lab Med. 1995;15:39–50.

    Article  CAS  PubMed  Google Scholar 

  112. Zuberbuhler JR, Neches WH, Park SC. Infectious endocarditis – an experience spanning three decades. Cardiol Young. 1994;4:244–51.

    Article  Google Scholar 

  113. Fowler VG, Miro JM, Hoen B, et al. Staphylococcus aureus endocarditis: a consequence of medical progress. J Am Med Assoc. 2005;293:3012–21.

    Article  CAS  Google Scholar 

  114. Choi M, Mailman TL. Pneumococcal endocarditis in infants and children. Pediatr Infect Dis J. 2004;23:166–71.

    Article  PubMed  Google Scholar 

  115. Arey JB. Diseases of the endocardium, myocardium and pericardium. In: Arey JB, editor. Cardiovascular pathology in infants and children. Philadelphia: WB Saunders; 1984.

    Google Scholar 

  116. Morrow WR, Haas JE, Benjamin DR. Nonbacterial endocardial thrombosis in neonates: relationship to persistent fetal circulation. J Pediatr. 1982;100:117–22.

    Article  CAS  PubMed  Google Scholar 

  117. Favara BE, Franciosi RA, Butterfield LJ. Disseminated intravascular and cardiac thrombosis of the neonate. Am J Dis Child. 1974;127:197–204.

    CAS  PubMed  Google Scholar 

  118. Feldman AM, McNamara D. Myocarditis. N Engl J Med. 2000;343:1388–98.

    Article  CAS  PubMed  Google Scholar 

  119. Kim KS, Hufnagel G, Chapman NM, et al. The group B Coxsackieviruses and myocarditis. Rev Med Virol. 2001;11:355–68.

    Article  CAS  PubMed  Google Scholar 

  120. Baboonian C, Davies MJ, Booth J, et al. Coxsackie B viruses and heart disease. Curr Top Microbiol Immunol. 1997;233:31–52.

    Google Scholar 

  121. Keesler MJ, Fisher SD, Lipschultz SE. Cardiac manifestations of HIV infections in infants and children. Ann N Y Acad Sci. 2001;946:169–78.

    Article  CAS  PubMed  Google Scholar 

  122. Weber MA, Ashworth MT, Risdon RA, et al. Clinicopathological features of paediatric deaths due to myocarditis: an autopsy series. Arch Dis Child. 2008;93:594–8.

    Article  CAS  PubMed  Google Scholar 

  123. O’Malley A, Barry-Kinsella B, Hughes C, et al. Parvovirus infects cardiac myocytes in hydrops fetalis. Pediatr Dev Pathol. 2003;5:414–20.

    Article  Google Scholar 

  124. Munro K, Croxson MC, Thomas S, et al. Three cases of myocarditis in childhood associated with human parvovirus (B19 virus). Pediatr Cardiol. 2003;24:473–5.

    Article  CAS  PubMed  Google Scholar 

  125. Wasi J, Shuter J. Primary bacterial infection of the myocardium. Front Biosci. 2003;8:s228–31.

    Article  CAS  PubMed  Google Scholar 

  126. Rosenberg HS. Cardiovascular effects of congenital infections. Am J Cardiovasc Pathol. 1987;1:147–56.

    CAS  PubMed  Google Scholar 

  127. Beardsall K, White DK, Pinto EM, et al. Pericardial effusions and cardiac tamponade as a complication of neonatal long lines. Arch Dis Child Fetal Neonatal Ed. 2003;88:F292–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tani LY, Veasy LG, Minich LL, et al. Rheumatic fever in children younger than 5 years: is the presentation different? Pediatrics. 2003;112:1065–8.

    Article  PubMed  Google Scholar 

  129. Bamber AR, Pryce J, Cook A, et al. Myocardial necrosis and infarction in newborns and infants. Forensic Sci Med Pathol. 2013;9:521–7.

    Article  PubMed  Google Scholar 

  130. Chaoui R. Coronary arteries in fetal life: physiology, malformations and the “heart-sparing effect”. Acta Paediatr Suppl. 2004;446:6–12.

    Google Scholar 

  131. Makikallio K, Vuolteenaho O, Jouppila P, et al. Ultrasonic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation. 2002;105:2058–63.

    Article  PubMed  Google Scholar 

  132. Young NA, Mondestin MAJ, Bowman RL. Ischaemic changes in fetal myocardium. An autopsy series. Arch Pathol Lab Med. 1994;118:289–92.

    CAS  PubMed  Google Scholar 

  133. DeSa DJ. Coronary arterial lesions and myocardial necrosis in stillbirths and infants. Arch Dis Child. 1979;54:918–30.

    Article  CAS  Google Scholar 

  134. Topaz O. Myocardial calcification in neonates and infants. A unique tissue reaction. South Med J. 1991;84:891–5.

    Article  CAS  PubMed  Google Scholar 

  135. Tennstedt C, Chaoui R, Vogel M, et al. Pathologic correlation of echogenic foci in the fetal heart. Prenat Diagn. 2000;20:287–92.

    Article  CAS  PubMed  Google Scholar 

  136. Lazda EJ, Batchelor WH, Cox PM. Immunohistochemical detection of myocardial necrosis in stillbirth and neonatal death. Pediatr Dev Pathol. 2000;3:40–7.

    Article  CAS  PubMed  Google Scholar 

  137. Fishbein MC, Wang T, Matijasevic M, et al. Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc Pathol. 2003;12:65–71.

    Article  CAS  PubMed  Google Scholar 

  138. Richardson P, McKenna W, Bristow M, et al. Report of the World Health Organisation/International Society and Federation of cardiology Task Force on the definitions and classification of cardiomyopathies. Circulation. 1996;93:841–2.

    Article  CAS  PubMed  Google Scholar 

  139. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies. Circulation. 2006;113:1807–16.

    Article  PubMed  Google Scholar 

  140. Wigle ED, Rakowski H, Kimball BP, et al. Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation. 1995;92:1680–92.

    Article  CAS  PubMed  Google Scholar 

  141. Redwood CS, Moolman-Smook J, Watkins H. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc Res. 1999;44:20–36.

    Article  CAS  PubMed  Google Scholar 

  142. Ahmad F, Seidman JG, Seidman CE. The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet. 2005;6:185–216.

    Article  CAS  PubMed  Google Scholar 

  143. McKenna WJ, Coccolo F, Elliott PM. Genes and disease expression in hypertrophic cardiomyopathy. Lancet. 1998;352:1162–3.

    Article  CAS  PubMed  Google Scholar 

  144. Geier C, Gehmlich K, Ehler E, et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet. 2008;17:2753–65.

    Article  CAS  PubMed  Google Scholar 

  145. Friedrich FW, Wilding BR, Reischmann S, et al. Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum Mol Genet. 2012;21:3237–54.

    Article  CAS  PubMed  Google Scholar 

  146. Servidei S, Bertini E, DiMauro S. Hereditary metabolic cardiomyopathies. Adv Pediatr. 1994;41:1–32.

    CAS  PubMed  Google Scholar 

  147. Arad M, Moskowitz IP, Patel VV, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest. 2002;109:357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Arad M, Maron BJ, Gorham JM, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362–72.

    Article  CAS  PubMed  Google Scholar 

  149. Dutka DP, Donnelly JE, Nihoyannopoulos P, et al. Marked variation in the cardiomyopathy associated with Friedreich’s ataxia. Heart. 1999;81:141–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genomics Hum Genet. 2005;6:45–68.

    Article  CAS  PubMed  Google Scholar 

  151. McMahon JN, Berry PJ, Joffe HS. Fatal hypertrophic cardiomyopathy in an infant of a diabetic mother. Pediatr Cardiol. 1990;11:211–2.

    Article  CAS  PubMed  Google Scholar 

  152. Israel BA, Sherman FS, Guthrie RD. Hypertrophic cardiomyopathy associated with dexamethasone therapy for chronic lung disease in preterm infants. Am J Perinatol. 1993;10:307–10.

    Article  CAS  PubMed  Google Scholar 

  153. Gilbert-Barness G, Barness LA. Nonmalformative cardiovascular pathology in infants and children. Pediatr Dev Pathol. 1999;2:499–530.

    Article  CAS  PubMed  Google Scholar 

  154. Badorff C, Lee G-H, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrohpin: evidence of cytoskeletal disruption in acquired cardiomyopathy. Nat Med. 1999;5:320–5.

    Article  CAS  PubMed  Google Scholar 

  155. Zatuchni J, Aegerter EE, Molthan L, et al. The heart in progressive muscular dystrophy. Circulation. 1961;111:846–53.

    Google Scholar 

  156. Schwartz ML, Cox GF, Lin AE, et al. Clinical approach to genetic cardiomyopathy in children. Circulation. 1996;94:2021–38.

    Article  CAS  PubMed  Google Scholar 

  157. Kamisago M, Sharma SD, DePalma SR, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med. 2000;343:1688–96.

    Article  CAS  PubMed  Google Scholar 

  158. Graham RM, Owens WA. Pathogenesis of inherited forms of dilated cardiomyopathy. N Engl J Med. 1999;341:1759–62.

    Article  CAS  PubMed  Google Scholar 

  159. Price DI, Stanford LC, Braden DS, et al. Hypocalcemic rickets: an unusual cause of dilated cardiomyopathy. Pediatr Cardiol. 2003;5:510–2.

    Article  Google Scholar 

  160. Chang KTE, Taylor GP, Meschino WS, et al. Mitogenic cardiomyopathy: a lethal neonatal familial cardiomyopathy characterized by myocyte hyperplasia and proliferation. Hum Pathol. 2010;41:1002–8.

    Article  PubMed  Google Scholar 

  161. Shenje LK, Andersen P, Halushka MK, et al. Mutations in Alström protein impair terminal differentiation in cardiomyocytes. Nat Commun. 2014;5:3416.

    Article  PubMed  CAS  Google Scholar 

  162. Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336:267–76.

    Article  CAS  PubMed  Google Scholar 

  163. Russo LM, Webber SA. Idiopathic restrictive cardiomyopathy in children. Heart. 2005;91:1199–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hughes SE, McKenna WJ. New insights into the pathology of inherited cardiomyopathy. Heart. 2005;91:257–64.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Selcen D, Ohno K, Engel AG. Myofibrillary myopathy: clinical, morphological and genetic studies in 63 patients. Brain. 2004;127:439–51.

    Article  PubMed  Google Scholar 

  166. D’Amati G, Leone O, diGioia CR, et al. Arrhythmogenic right ventricular cardiomyopathy: clinicopathologic correlation based on a revised definition of pathologic patterns. Hum Pathol. 2001;32:1078–86.

    Article  PubMed  Google Scholar 

  167. Ursell PC. Noncompaction in the fetus and neonate: an autopsy study. Am J Med Genet. 2013;163C:169–77.

    Article  PubMed  Google Scholar 

  168. Burke A, Mont E, Kutys R, et al. Left ventricular noncompaction: a pathological study of 14 cases. Hum Pathol. 2005;36:403–11.

    Article  PubMed  Google Scholar 

  169. Bleyl SB, Mumford BR, Thompson V, et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet. 1997;61:868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pignatelli RH, McMahon CJ, Dreyer WJ, et al. Clinical characterisation of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003;108:2672–8.

    Article  PubMed  Google Scholar 

  171. Wong JA, Bofinger MK. Noncompaction of the left ventricular myocardium in Melnick-Needles syndrome. Am J Med Genet. 1997;71:72–5.

    Article  CAS  PubMed  Google Scholar 

  172. Karatza AA, Holder SE, Gardiner HM. Isolated non-compaction of the ventricular myocardium: prenatal diagnosis and natural history. Ultrasound Obstet Gynecol. 2003;21:75–80.

    Article  CAS  PubMed  Google Scholar 

  173. Malhotra V, Ferrans VJ, Virmani R. Infantile histiocytoid cardiomyopathy: three cases and literature review. Am Heart J. 1994;128:1009–21.

    Article  CAS  PubMed  Google Scholar 

  174. Shehata BM, Patterson K, Thomas JE, et al. Histiocytoid cardiomyopathy: three new cases and review of the literature. Pediatr Dev Pathol. 1998;1:56–69.

    Article  CAS  PubMed  Google Scholar 

  175. Vallance HD, Jeven G, Wallace DC, et al. A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344 G (MERRF) mitochondrial DNA mutation. Pediatr Cardiol. 2004;25:538–40.

    Article  CAS  PubMed  Google Scholar 

  176. Finsterer J. Histiocytoid cardiomyopathy: a mitochondrial disorder. Clin Cardiol. 2008;31:225–7.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Bird LM, Krous HF, Eichenfield LF, et al. Female infant with oncocytic cardiomyopathy and microphthalmia with linear skin defects (MLS): a clue to the pathogenesis of oncocytic cardiomyopathy? Am J Med Genet. 1994;53:141–58.

    Article  CAS  PubMed  Google Scholar 

  178. Shehata BM, Bouzyk M, Agrwal V, et al. Whole exome DNA sequences of histiocytoid cardiomyopathy patients and first degree family members – reporting two new genes confirming inheritance patterns in histiocytoid cardiomyopathy. Pediatr Dev Pathol. 2013;16:129.

    Google Scholar 

  179. Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ, et al. Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyopathy. J Inherit Metab Dis. 1997;20:674–9.

    Article  CAS  PubMed  Google Scholar 

  180. Marin-Garcia J, Goldenthal MJ. Mitochondrial cardiomyopathy: molecular and biochemical analysis. Pediatr Cardiol. 1997;18:251–60.

    Article  CAS  PubMed  Google Scholar 

  181. Terman A, Brunk UT. Autophagy in cardiac myocyte homeostasis, aging and pathology. Cardiovasc Res. 2005;68:355–65.

    Article  CAS  PubMed  Google Scholar 

  182. Taylor GP. Neonatal mitochondrial cardiomyopathy. Pediatr Dev Pathol. 2004;7:620–4.

    Article  CAS  PubMed  Google Scholar 

  183. Cochat P. Combined liver kidney transplantation in primary hyperoxaluria type 1. Eur J Pediatr. 1999;158:S75–80.

    Article  PubMed  Google Scholar 

  184. Hayflick S, Rowe S, Kavanaugh-Mc Hugh A, et al. Acute infantile cardiomyopathy as a presenting feature of mucopolysaccharidosis. J Pediatr. 1992;12:269–72.

    Article  Google Scholar 

  185. Gilbert-Barness E. Cardiovascular involvement in metabolic diseases. Pediatr Pathol Mol Med. 2002;21:93–136.

    Article  PubMed  Google Scholar 

  186. Pernot C, Loth P, Gautier M. The myocardiopathies of glycogenosis. Arch Mal Coeur Vaiss. 1978;71:428–36.

    CAS  PubMed  Google Scholar 

  187. VanNoort G, Straks W, Van Diggelen OP, et al. A congenital variant of glycogenosis type IV. Pediatr Pathol. 1993;13:685–98.

    Article  CAS  Google Scholar 

  188. Miranda AF, Nette G, Hartlage P, et al. Phosphorylase isoenzymes in normal and myophosphorylase deficient human heart. Neurology. 1979;29:1538–41.

    Article  CAS  PubMed  Google Scholar 

  189. Kelley RI, Cheatham JP, Clark BJ, et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation and 3-methylglutaconic aciduria. J Pediatr. 1991;119:738–47.

    Article  CAS  PubMed  Google Scholar 

  190. Gehrmann J, Sohlbach K, Linnebank M, et al. Cardiomyopathy in congenital disorders of glycosylation. Cardiol Young. 2003;13:345–51.

    Article  PubMed  Google Scholar 

  191. Nadas AS, Ellison RC. Cardiac tumors in infancy. Am J Cardiol. 1968;21:363–6.

    Article  CAS  PubMed  Google Scholar 

  192. Burke A, Virmani R. Classification and incidence of cardiac tumors. In: Burke A, Virmani R, editors. Atlas of tumor pathology 3rd series, Fascilce 16, tumors of the heart and great vessels. Washington DC: AFIP; 1995. p. 1.

    Google Scholar 

  193. Isaacs Jr H. Fetal and neonatal cardiac tumors. Pediatr Cardiol. 2004;25:252–73.

    Article  PubMed  Google Scholar 

  194. Sallee D, Spector ML, Heerkeren DW, et al. Primary pediatric cardiac tumors: a 17 year experience. Cardiol Young. 1999;9:155–62.

    Article  CAS  PubMed  Google Scholar 

  195. Yinon Y, Chitayat D, Blaser S, et al. Fetal cardiac tumors: a single-center experience of 40 cases. Prenat Diagn. 2010;30:941–9.

    Article  PubMed  Google Scholar 

  196. Beghetti M, Gow RM, Haney I, et al. Pediatric benign primary cardiac tumours: a 15-year review. Am Heart J. 1997;134:1107–14.

    Article  CAS  PubMed  Google Scholar 

  197. Isaacs H. Perinatal (fetal and neonatal) tuberous sclerosis: a review. Am J Perinatol. 2009;26:755–60.

    Article  PubMed  Google Scholar 

  198. Tworetzky W, McElhinney DB, Margossian R, et al. Association between cardiac tumors and tuberous sclerosis in the fetus and neonate. Am J Cardiol. 2003;92:487–9.

    Article  PubMed  Google Scholar 

  199. Tehrani M, Vettraino IM, Chang CH. Localized nodular hypertrophy mimicking rhabdomyoma in the fetal heart: prenatal sonographic and pathology findings. Pediatr Dev Pathol. 2004;7:192–7.

    Article  PubMed  Google Scholar 

  200. Burke AP, Rosada-de-Christenson M, Templeton PA, et al. Cardiac fibroma: clinicopathologic correlates and surgical treatment. J Thorac Cardiovasc Surg. 1994;108:862–70.

    Article  CAS  PubMed  Google Scholar 

  201. Heerema-McKenney A, Harrison MR, Bratton B, et al. Congenital teratoma: a clinicopathologic study of 22 fetal and neonatal tumors. Am J Surg Pathol. 2005;29:29–38.

    Article  PubMed  Google Scholar 

  202. Amano J, Kono T, Wada Y, et al. Cardiac myxoma: its origin and tumor characteristics. Ann Thorac Cardiovasc Surg. 2003;9:215–21.

    PubMed  Google Scholar 

  203. Watanabe M, Abe M, Ogawa S. A case of neonatal cardiac tamponade associated with benign hemangioma. J Nippon Med Sch. 2010;77:2–3.

    Article  PubMed  Google Scholar 

  204. Daubeney PE, Ogilvie BC, Moore IE, et al. Intrapericardial lymphangioma presenting as neonatal cardiac tamponade. Pediatr Cardiol. 1996;17:129–31.

    Article  CAS  PubMed  Google Scholar 

  205. Kobayashi D, Delius RE, Debelenko LV, et al. Cardiac juvenile xanthogranuloma in an infant presenting with pericardial effusion. Congenit Heart Dis. 2013;8:E106–10.

    Article  PubMed  Google Scholar 

  206. Burke A, Virmani R. Pediatric heart tumors. Cardiovasc Pathol. 2008;17:193–8.

    Article  PubMed  Google Scholar 

  207. Keeling JW. Iatrogenic disease in the newborn. Virchows Archiv A. 1981;349:1–29.

    Article  Google Scholar 

  208. ter Heide H, Strander-Stumpel CT, Pals G, et al. Neonatal Marfan syndrome: clinical report and review of the literature. Clin Dysmorphol. 2005;14:81–4.

    Article  PubMed  Google Scholar 

  209. Luschner TF, Lie JT, Aw S, et al. Arterial fibromuscular dysplasia. Mayo Clin Proc. 1987;69:931–52.

    Article  Google Scholar 

  210. Price RA, Vawter G. Arterial fibromuscular dysplasia in infancy and childhood. Arch Pathol. 1972;93:419–26.

    CAS  PubMed  Google Scholar 

  211. Arey JB, Segal R. Fibromuscular dysplasia of the intramyocardial coronary arteries. Pediatr Pathol. 1987;7:97–103.

    CAS  PubMed  Google Scholar 

  212. Imamura M, Yokoyama S, Kikuchi K. Coronary fibromuscular dysplasia presenting as sudden infant death. Arch Pathol Lab Med. 1997;121:159–61.

    CAS  PubMed  Google Scholar 

  213. Billingham ME. Normal heart. In: Sternberg SS, editor. Histology for pathologists. New York: Raven Press; 1992. p. 215–31.

    Google Scholar 

  214. Maron BJ, Wolfson JK, Epstein SE, et al. Intramural (“small-vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986;8:545–7.

    Article  CAS  PubMed  Google Scholar 

  215. Burke AP, Ribe JK, Ak B, et al. Hamartoma of mature cardiac myocytes. Hum Pathol. 1998;29:904–9.

    Article  CAS  PubMed  Google Scholar 

  216. Fortuin NJ, Morrow AG, Roberts WC. Late vascular manifestations of the rubella syndrome. A roentgenographic-pathologic study. Am J Med. 1971;51:134–40.

    Article  CAS  PubMed  Google Scholar 

  217. Greene JF, Fitzwater JE, Burgess J. Arterial lesions associated with neurofibromatosis. Am J Clin Pathol. 1974;62:481–7.

    Article  PubMed  Google Scholar 

  218. Rolfes DB, Towbin R, Bove KE. Vascular dysplasia in a child with tuberous sclerosis. Pediatr Pathol. 1985;3:359–73.

    Article  CAS  PubMed  Google Scholar 

  219. Marrott PK, Newcombe KD, Becroft DM, et al. Idiopathic infantile arterial calcification with survival to adult life. Pediatr Cardiol. 1984;5:119–22.

    Article  CAS  PubMed  Google Scholar 

  220. Morton R. Idiopathic arterial calcification in infancy. Histopathology. 1978;2:423–32.

    Article  CAS  PubMed  Google Scholar 

  221. Farquhar J, Makhseed N, Sargent, et al. Idiopathic infantile arterial calcification and persistent pulmonary hypertension. Am J Perinatol. 2005;22:121–5.

    Article  PubMed  Google Scholar 

  222. Rutsch F, Ruf N, Vaingankar S, et al. Mutations in ENPP1 are associated with “idiopathic” infantile arterial calcification. Nat Genet. 2003;34:378–81.

    Article  Google Scholar 

  223. Newburger JW, Fulton DR. Kawasaki disease. Curr Opin Pediatr. 2004;16:508–14.

    Article  PubMed  Google Scholar 

  224. Anderson RH, Ho SY, Smith A, et al. Study of the cardiac conduction tissues in the paediatric age group. Diagn Histopathol. 1981;4:3–15.

    CAS  PubMed  Google Scholar 

  225. James TN. Cardiac conduction system: fetal and postnatal development. Am J Cardiol. 1970;25:213–26.

    Article  CAS  PubMed  Google Scholar 

  226. Feldt RH, DuShane JW, Titus JL. The atrioventricular conduction system in persistent common atrioventricular canal defect. Circulation. 1970;42:437–44.

    Article  CAS  PubMed  Google Scholar 

  227. Lev M, Bharati S. Lesions of the conduction system and their functional significance. Pathol Annu. 1974;9:157–207.

    Google Scholar 

  228. Ho SY, Esscher E, Anderson RH, et al. Anatomy of congenital complete heart block and relation to maternal anti-ro antibodies. Am J Cardiol. 1986;58:291–4.

    Article  CAS  PubMed  Google Scholar 

  229. Llanos C, Friedman DM, Saxena A, et al. Anatomical and pathological findings in hearts from fetuses and infants with cardiac manifestations of neonatal lupus. Rheumatology. 2012;51:1086–92.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Cuneo BF, Fruitman D, Benson DW, et al. Spontaneous rupture of atrioventricular valve tensor apparatus as late manifestation of anti-Ro/SSA antibody-mediated cardiac disease. Am J Cardiol. 2011;107:761–6.

    Article  PubMed  Google Scholar 

  231. Wever EF, Robles de Medina EO. Sudden death in patients without structural heart disease. J Am Coll Cardiol. 2004;43:1137–44.

    Article  PubMed  Google Scholar 

  232. Antzelevitch C. Molecular biology and cellular mechanisms of Brugada and long QT syndromes in infants and young children. J Electrocardiol. 2003;34:177–81.

    Article  Google Scholar 

  233. Francis J, Sankar V, Nair VK, et al. Catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2005;2:550–4.

    Article  PubMed  Google Scholar 

  234. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS Expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10:1932–63.

    Article  PubMed  Google Scholar 

  235. Skinner JR. Sudden unexplained death in infancy and long QT syndrome. Curr Pediatr Rev. 2010;6:48–55.

    Article  Google Scholar 

  236. Ackerman MJ, Siu BL, Sturner WQ, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–9.

    Article  CAS  PubMed  Google Scholar 

  237. Tester DJ, Ackerman MJ. Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc Res. 2005;67:388–96.

    Article  CAS  PubMed  Google Scholar 

  238. Cronk LB, Ye B, Kaku T, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4:161–6.

    Article  PubMed  Google Scholar 

  239. Van Norstrand DW, Valdivia CR, Tester DJ, et al. Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation. 2007;116:2253–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Van Norstrand DW, Medeiros-Domingo A, Tester DJ, et al. Missense mutations in SNTA1-encoded syntrophin alpha and sudden infant death syndrome. Circulation. 2008;118:S812–3.

    Google Scholar 

  241. Tan HL, Hofman N, van Langen IM, et al. Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation. 2005;112:207–13.

    Article  PubMed  Google Scholar 

  242. Tester DJ, Dura M, Carturan E, et al. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm. 2007;4:733–9.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Tester DJ, Tan B-H, Medeiros-Domingo A, et al. Loss-of function mutations in the KCNJ8-encoded Kir6.1 KATP channel and sudden infant death syndrome. Circ Cardiovasc Genet. 2011;4:510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Arnestad M, Crotti L, Rognum TO, et al. Prevalence of long QT syndrome gene variations in sudden infant death syndrome. Circulation. 2007;115:361–7.

    Article  PubMed  Google Scholar 

  245. Manasek FJ, Icardo J, Nakamura A, et al. Cardiogenesis: developmental mechanisms and embryology. In: Fozzard HA, Haber E, Jennings RB, et al., editors. The heart and cardiovascular system. New York: Raven Press; 1986. p. 965–85.

    Google Scholar 

  246. Rigby ML, Shinebourne EA. Development of the cardiovascular system. Functional development. In: Davis JA, Dobbing J, editors. Scientific foundations of paediatrics. London: Butterworth-Heinemann Ltd; 1981. p. 373–89. Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Ashworth MD, FRCPath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Ashworth, M.T. (2015). The Cardiovascular System. In: Khong, T.Y., Malcomson, R.D.G. (eds) Keeling’s Fetal and Neonatal Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-19207-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19207-9_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19206-2

  • Online ISBN: 978-3-319-19207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics