Skip to main content
Log in

Development of brain damage after neonatal hypoxia-ischemia: Excitatory amino acids and cysteine

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the possible role of excitatory amino acids (EAAs) and cysteine in the development of brain damage after hypoxia-ischemia (HI) in neonates. In a rat model of neonatal HI, changes in extracellular (ec) amino acids in cerebral cortex were measured with microdialysis and correlated with the extent of brain damage at the site of probe placement. Extracellular concentrations of glutamate, aspartate and cysteine increased during HI and remained elevated during reperfusion. During HI the pattern of EAA changes was the same in the infarcted, undamaged and border zone regions. During reperfusion, however, the ec concentrations of glutamate, aspartate and cysteine were higher in infarcted and border zone areas compared to undamaged tissue. HI also produced a slight increase of tissue concentration of cysteine and decrease of tissue concentration of glutamate in parietal cortex of the HI hemisphere. The effect of cysteine on brain damage induced by HI and glutamate was also investigated. A subtoxic dose of cysteine potentiated glutamate toxicity in the arcuate nucleus and enhanced brain infarction after HI in neonatal rats. The results show that in neonatal HI the extracellular levels of EAAs during HI are not directly related to brain injury but the EAA levels during reflow predict the extent of infarction. Cysteine increases HI-induced brain injury and potentiates glutamate toxicity in neonatal rats. Speculatively, elevated level of cysteine during reperfusion may participate in the excitotoxic cascade leading to brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPA:

2-amino-3-(3-hydroxy-5-methylisoxasol-4-yl)propanoate

EAAs:

excitatory amino acids

HI:

hypoxia-ischemia

KA:

kainic acid

MAP 2:

microtubule-associated protein 2

MK-801:

(+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate

NBQX:

2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline

NMDA:

N-methyl-D-aspartate

References

  • Andiné, P., Lehmann, A., Ellrén, K., Wennberg, E., Kjellmer, I., Nielsen, T., and Hagberg, H. (1988). The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection.Neurosci. Lett. 90:208–212.

    PubMed  Google Scholar 

  • Andiné, P., Thordstein, M., Kjellmer, I., Nordborg, C., Thiringer, K., Wennberg, E., and Hagberg, H. (1990). Evaluation of brain damage in a rat model of neonatal hypoxic-ischemia.J. Neurosci. Methods 35:253–260.

    PubMed  Google Scholar 

  • Andiné, P., Sandberg, M., Bågenholm, R., Lehmann, A., and Hagberg, H. (1991). Intra-and extracellular changes of amino acids in the cerebral cortex of the neonatal rat during hypoxia-ischemia.Brain Res. Dev. Brain Res. 64:115–120.

    PubMed  Google Scholar 

  • Ascher, P., and Nowak, L. (1987). Electrophysiological studies of NMDA receptors.Trends Neurosci. 10:284–288.

    Google Scholar 

  • Barks, J.D.E., and Silverstein, F.S. (1992). Excitatory amino acids contribute to the pathogenesis of perinatal hypoxic-ischemic brain injury.Brain Pathol. 2:235–243.

    PubMed  Google Scholar 

  • Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H. (1984). Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43:1369–1374.

    PubMed  Google Scholar 

  • Bowe, M. A., and Nadler, V. (1990). Developmental increase in the sensitivity to magnesium of NMDA receptors on CA1 hippocampal pyramidal cells.Brain Res. Dev. Brain Res. 56:55–61.

    PubMed  Google Scholar 

  • Butcher, S.P., Bullock, R., Graham, D.I. and McCulloch, J. (1990). Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion.Stroke 21:1727–1733.

    PubMed  Google Scholar 

  • Cherici, G., Alesiani, M., Pellegrini-Giampietro, D.E., and Moroni, F. (1991). Ischemia does not induce the release of excitotoxic amino acids from the hippocampus of newborn rats.Pediatr. Res. 60:235–240.

    Google Scholar 

  • Csernansky, J.G., Bardgett, M.E., Labruyere, J., Jackson, J.J., and Olney, J.W. (1993). Age-dependent neurotoxic response to L-cysteine.Soc. Neurosci. Abstr. 19:1659.

    Google Scholar 

  • Cuénod, M., Grandes, P., Zängerle, L., Streit, P., and Do, K.Q. (1993). Sulphur-containing amino acids in intercellular communication.Biochem. Soc. Trans. 21:72–77.

    PubMed  Google Scholar 

  • Eimerl, S. and Schramm, M. (1992). An endogenous metal appears to regulate NMDA receptor mediated45Ca influx and toxicity in cultured cerebellar granule cells.Neurosci. Lett. 137: 198–202.

    PubMed  Google Scholar 

  • Fagni, L., Lafon-Cazal, M., Rondouin, G., Manzoni, O., Lerner-Natoli, M. and Bockaert, J. (1994). The role of free radicals in NMDA-dependent neurotoxicity.Prog. Brain Res. 103: 381–390.

    PubMed  Google Scholar 

  • Ferkany, J. and Coyle, J. T. (1986). Heterogenity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain.J. Neurosci. Res. 16: 491–503.

    PubMed  Google Scholar 

  • Ford, L. M., Sanberg, P. R., Norman, A. B. and Fogelson, M. H. (1989). MK-801 prevents hippocampal neurodegeneration in neonatal hypoxic-ischemic rats.Arch. Neurol. 46: 1090–1096.

    PubMed  Google Scholar 

  • Gill, R., Andiné, P., Hillered, L., Persson, L. and Hagberg, H. (1992). The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischemia in the rat.J. Cereb. Blood Flow Metab. 12: 371–379.

    PubMed  Google Scholar 

  • Gilland, E., Bona, E. and Hagberg, H. (1995). NMDA-receptor dependent increase of cerebral glucose utilisation after hypoxia-ischemia in neonatal rat.J. Cereb. Blood Flow Metab. 15, (suppl.1): S283.

    Google Scholar 

  • Gilman, S. C., Bonner, M. J. and Pellmar, T. C. (1994). Free radicals enhance basal release of D-(3H)aspartate from cerebral cortical synaptosomes.J. Neurochem. 62: 1757–1763.

    PubMed  Google Scholar 

  • Giulian, D. and Vaca, K. (1993). Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system.Stroke 24 (suppl. 1): I 84-I 90.

    Google Scholar 

  • Giulian, D., Vaca, K. and Corpuz, M. (1993). Brain glia release factors with opposing actions upon neuronal survival.J. Neurosci. 13:29–37.

    PubMed  Google Scholar 

  • Gordon, K.E., Simpson, J., Statman, D., and Silverstein, F.S. (1991). Effects of perinatal stroke on striatal amino acid efflux in rats studied within vivo microdialysis.Stroke 22:928–932.

    PubMed  Google Scholar 

  • Hagberg, B., Hagberg, G., Olow, I., and Wendt, L. (1989). The changing panorama of cerebral palsy in Sweden V. The birth year peiod 1979–82.Acta Paediatr. 78:283–290.

    Google Scholar 

  • Hagberg, B., Hagberg, G., and Olow, I. (1993a). The changing panorama of cerebral palsy in Sweden. VI. Prevalence and origin during the birth year period 1983–1986.Acta Paediatr. 82:387–393.

    PubMed  Google Scholar 

  • Hagberg, H., Lehmann, A., Sandberg, M., Nyström, B., Jacobson, I., and Hamberger, A. (1985). Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments.J. Cereb. Blood Flow Metab. 5:413–419.

    PubMed  Google Scholar 

  • Hagberg, H., Andersson, P., Kjellmer, I., Thiringer, K., and Thordstein, M. (1987). Extracellular overflow of glutamate, aspartate, GABA and taurine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia.Neurosci. Lett. 78:311–317.

    PubMed  Google Scholar 

  • Hagberg, H., Andiné, P., and Lehmann, A. (1990). Excitatory amino acids and hypoxic-ischemic damage in the immature brain. In (A. Schurr, ed.),Cerebral Ischemia and Resuscitation., CRC-Press, Florida, pp. 115–120.

    Google Scholar 

  • Hagberg, H., Thornberg, E., Blennow, M., Kjellmer, I., Lagercrantz, H., Thiringer, K.et al. (1993b). Excitatory amino acids in the cerebrospinal fluid of asphyxiated infants: relationship to hypoxic-ischemic encephalopathy.Acta Paediatr. 82:925–929.

    PubMed  Google Scholar 

  • Hagberg, H., Gilland, E., Diemer, N. H., and Andiné, P. (1994). Hypoxia-ischemia in the neonatal rat brain: histopathology after post-treatment with NMDA and non-NMDA receptor antagonists.Biol. Neonate 66:206–213.

    Google Scholar 

  • Hansen, A.J., and Zeuthen, T. (1981). Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex.Acta Physiol. Scand. 113:437–445.

    PubMed  Google Scholar 

  • Hattori, H., Morin, A.M., Schwartz, P.H., Fujikawa, D.G. and Wasterlain, C.G. (1989). Posthypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat.Neurology 39:713–718.

    PubMed  Google Scholar 

  • Hattori, H., and Wasterlain, C.G. (1990). Excitatory amino acids in the developing brain: ontogeny, plasticity, and excitotoxicity.Pediatr. Neurol. 6:219–228.

    PubMed  Google Scholar 

  • Headley, P.M., and Grillner, S. (1991). Excitatory amino acids and synaptic transmission: The evidence for a physiological function.Trends Pharmacol. Sci. (special report):30–36.

  • Heafield, M.T., Fearn, S., Steventon, G.B., Waring, R.H., Williams, A.C. and Sturman, S.G. (1990). Plasma cysteine and sulphate levels in patients with Motor neurone, Parkinson's and Alzheimer's disease.Neurosci. Lett. 110:216–220.

    PubMed  Google Scholar 

  • Hjalmarson, O., Hagberg, B., and Hagberg, G. (1988). Epidemiologic panorama of brain impairments and causative factors-Swedish experiences. In (Kubliet al., eds.),Perinatal Events and Brain Damage in Surviving Children, Springer-Verlag, Berlin, pp. 28–36.

    Google Scholar 

  • Johnston, M.V., and Silverstein, F.S.W. (1987). Perinatal anoxia. In (J.T. Coyle, ed.),Animal Models of Dementia., Alan R. Liss, New York, pp. 223–251.

    Google Scholar 

  • Johnston, M.V. (1993). Cellular alterations associated with perinatal asphyxia.Clin. Invest. Med. 16:122–132.

    PubMed  Google Scholar 

  • Kato, S., Negishi, K., Mawatari, K., and Kuo, C. (1992). A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion.Neurosci. 48:903–914.

    Google Scholar 

  • Keller, H.J., Do, K. Q., Zollinger, M., Winterhalter, K.H., and Cuénod, M. (1989). Cysteine: depolarization-induced release from rat brainin vitro.J. Neurochem. 52:1801–1806.

    PubMed  Google Scholar 

  • Landolt, H., Lutz, T.W., Langemann, H., Stäuble, D., Mendelowitsch, A., Gratzl, O., and Honegger, C.G. (1992). Extracellular antioxidants and amino acids in the cortex of the rat: monitoring by microdialysis of early ischemic changes.J. Cereb. Blood Flow Metab. 12:96–102.

    PubMed  Google Scholar 

  • Lazarewicz, J.W., Puka-Sundvall, M., Sandberg, M., and Hagberg, H. (1995). Differential effects of N-methyl-D-aspartate on Ca2+ homeostasis in developing and adult rat striatum:In vivo microdialysis approach.Int. J. Dev. Neurosci. 13:695–704.

    Google Scholar 

  • Lehmann, A., Hagberg, H., Orwar, O., and Sandberg, M. (1993). Cysteine sulphinate and cysteate: mediators of cysteine toxicity in the neonatal rat brain?Eur. J. Neurosci. 5:1398–1412.

    PubMed  Google Scholar 

  • Lipton, S.A., and Stamler, J.S. (1994). Actions of redox related congeners of nitric oxide at the NMDA receptor.Neuropharmacol. 33:1229–1233.

    Google Scholar 

  • Lodge, D., and Johnson, K.M. (1990). Noncompetitive excitatory amino acid receptor antagonists.Trends Pharmacol. Sci. 11:81–86.

    PubMed  Google Scholar 

  • Lund Karlsen, R., Grofova, I., Malthe-Sørenssen, D., and Fonnum, F. (1981). Morphological changes in rat brain induced by L-cysteine injection in newborn animals.Brain Res. 208:167–180.

    PubMed  Google Scholar 

  • Luo, D., and Vincent, S.R. (1994). NMDA-dependent nitric oxide release in the hippocampus in vivo: interactions with noradrenaline.Neuropharmacol. 33:1345–1350.

    Google Scholar 

  • Lyrer, P., Landolt, H., Kabiersch, A., Langemann, H., and Kaeser, H. (1991). Levels of low molecular weight scavengers in the rat brain during focal ischemia.Brain Res. 567:317–320.

    PubMed  Google Scholar 

  • MacDermott, A.B., and Dale, N. (1987). Receptors, ion channels and synaptic potentials underlying the integrative actions of excitatory amino acids.Trends Neurosci. 10:280–284.

    Google Scholar 

  • Matsumoto, K., Lo, E.H., Pierce, A., Halpern, E.F., and Newcomb, R. (1995). Secondary efflux of neurotransmitter amino acid during reperfusion following transient focal ischemia in rats.J. Cerebr. Blood Flow Metab. 15, (suppl. 1):S319.

    Google Scholar 

  • McDonald, J.W., Silverstein, F.S., and Johnston, M.V. (1987). MK-801 protects the neonatal brain from hypoxic-ischemic damage.Eur. J. Pharmacol. 140:359–361.

    PubMed  Google Scholar 

  • McDonald, J.W., Silverstein, F.S. and Johnston, M.V. (1988). Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system.Brain Res. 459:200–203.

    PubMed  Google Scholar 

  • McDonald, J.W., and Johnston, M.V. (1990). Physiological and pathophysiological roles of excitatory amino acids during central nervous system development.Brain Res. Brain Res. Rev. 15:41–70.

    PubMed  Google Scholar 

  • McDonald, J.W., Trescher, W.H., and Johnston, M.V. (1992). Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development.Brain Res. 583:54–70.

    PubMed  Google Scholar 

  • McRae, A., Gilland, E., Bona, E., and Hagberg, H. (1995). Microglia activation after neonatal hypoxic-ischemia.Brain Res. Dev. Brain Res. 84:245–252.

    PubMed  Google Scholar 

  • Mujsce, D.J., Christensen, M.A., and Vannucci, R.C. (1990). Cerebral blood flow and edema in perinatal hypoxic-ischemic brain damage.Pediatr. Res. 27: 450–453.

    PubMed  Google Scholar 

  • Murphy, T.H., Miyamoto, M., Sastre, A., Schnaar, R.L. and Coyle, J.T. (1989). Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress.Neuron 2:1547–1558.

    PubMed  Google Scholar 

  • Nath, K.A. and Salahudeen, A.K. (1993). Autooxidation of cysteine generates hydrogen peroxide: cytotoxicity and attenuation by pyruvate.Am. J. Physiol. 264:F306-F314.

    PubMed  Google Scholar 

  • Nicholson, C., and Kraig, R.P. (1981). The behaviour of extracellular ions during spreading depression. In (T. Zeuthen, ed.),The Application of Ion-Selective Electrodes., Elsevier/North Holland, Amsterdam, pp. 217–238.

    Google Scholar 

  • Ohta, K., Fukuchi, Y., Shimazu, K., Komatsumoto, S., Araki, N., Hamada, J., and Shibata, M. (1995). Glutamate release correlates with tissue level of nitric oxide in the rat striatum.J. Cereb. Blood Flow Metab. 15, (suppl 1):S83.

    Google Scholar 

  • Olney, J.W., and Ho, O.L. (1970). Brain damage in infant mice following oral intake of glutamate, aspartate and cysteine.Nature 227:609–611.

    Google Scholar 

  • Olney, J.W., Ho, O.L., and Rhee, V. (1971). Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system.Exp. Brain Res. 14:61–76.

    PubMed  Google Scholar 

  • Olney, J.W., Ho, O.L., Rhee, V., and Schainker, B. (1972). Cysteine-induced brain damage in infant and fetal rodents.Brain Res. 45:309–313.

    PubMed  Google Scholar 

  • Olney, J.W., Misra, C.H., and Gubareff, T. (1975). Cysteine-S-sulfate: brain damaging metabolite in sulfide oxidase deficiency.J. Neuropathol. Exp. Neurol. 34:167–177.

    PubMed  Google Scholar 

  • Olney, J.W., Ikonomidou, C., Mosinger, J.L., and Friedrich, G. (1989). MK-801 Prevents hypobaric-ischemic neuronal degeneration in infant rat brain.J. Neurosci. 9:1701–1704.

    PubMed  Google Scholar 

  • Olney, J.W., Zorumski, C., Price, M.T., and Labruyere, J. (1990). L-cysteine, a bicarbonate-sensitive endogenous excitotoxin.Science 248:596–599.

    PubMed  Google Scholar 

  • Pace, J R., Martin, B.M., Paul, S.M., and Rogawski, M. (1992). High concentrations of neutral amino acids activate NMDA receptor currents in rat hippocampal neurons.Neurosci. Lett. 141:97–100.

    PubMed  Google Scholar 

  • Patrizio, M., and Levi, G. (1994). Glutamate production by cultured microglia: differences between rat and mouse, enhancement by lipopolysaccharide and lack effect of HIV coat protein gp 120 and depolarizing agents.Neurosci. Lett. 178:184–189.

    PubMed  Google Scholar 

  • Puka-Sundvall, M., Eriksson, P., Nilsson, M., Sandberg, M., and Lehmann, A. (1995a). Neurotoxicity of cysteine: interaction with glutamate.Brain Res. 705:65–70.

    PubMed  Google Scholar 

  • Puka-Sundvall, M., Sandberg, M., Bona, E., Gilland, E., and Hagberg, H. (1995b). Excitatory amino acids and cysteine in relation to brain damage in a neonatal rat model of hypoxic-ischemia.J. Cereb. Blood Flow Metab. 15, (suppl.1):S282.

    Google Scholar 

  • Pulsinelli, W.A., Brierley, J.B., and Plum, F. (1982). Temporal profile of neoronanal damage in a model of transient forebrain ischemia.Ann. Neurol. 11:491–498.

    PubMed  Google Scholar 

  • Represa, A., Tremblay, E., and Ben-Ari, Y. (1989). Transient increase of NMDA-binding sites in human hippocampus during development.Neurosci. Lett. 99:61–66.

    PubMed  Google Scholar 

  • Rice, J.E., Vannucci, R.C., and Brierley, J.B. (1981). The influence of immaturity on hypoxic-ischemic brain damage in the rat.Ann. Neurol. 9:131–141.

    PubMed  Google Scholar 

  • Schulz, J.B., Henshaw, D.R., Siwek, D., Jenkins, B.G., Ferrante, R.J., Cipolloni, P.B.et al. (1995). Involvement of free radicals in excitotoxicityin vivo.J. Neurochem. 64:2239–2247.

    PubMed  Google Scholar 

  • Sharpe, L.G., Olney, J.W., Ohlendorf, C., Lyss, A., Zimmerman, M., and Gale, B. (1975). Brain damage and associated behavioral deficits following the administration of L-cysteine to infant rats.Pharmacol. Biochem. Behav. 3:291–298.

    PubMed  Google Scholar 

  • Siesjö, B.K., and Bengtsson, F. (1989). Calcium, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression: An unifying hypothesis.J. Cereb. Blood Flow Metab. 9:127–141.

    PubMed  Google Scholar 

  • Silverstein, F.S., Naik, B., and Simpson, J. (1991). Hypoxia-ischemia stimulates hippocampal glutamate efflux in perinatal rat brain: Anin vivo microdialysis study.Pediatr. Res. 30:587–590.

    PubMed  Google Scholar 

  • Slivka, A., and Cohen, G. (1993). Brain ischemia markedly elevates levels of the neurotoxic amino acid, cysteine.Brain Res. 608:33–37.

    PubMed  Google Scholar 

  • Szatkowski, M., and Attwell, D. (1994). Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms.Trends Neurosci. 17:359–365.

    PubMed  Google Scholar 

  • Takagi, K., Ginsberg, M.D., Globus, M.Y., Dietrich, W.D., Martinez, E., Kraydieh, S., and Busto, R. (1993). Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: correlation with histopathology.J. Cereb. Blood Flow Metab. 13:575–585.

    PubMed  Google Scholar 

  • Takizawa, S., Shinohara, Y., Ogawa, S., Ichimori, K., and Nakazawa, H. (1995). Relation between glutamate release and nitric oxide concentration in transient forebrain ischemia.J. Cereb. Blood Flow Metab. 15 (suppl 1):S209.

    Google Scholar 

  • Tremblay, E., Roisin, M.P., Represa, A., Charriaut-Marlangue, C., and Ben-Ari, Y. (1988). Transient increased density of NMDA binding sites in the developing rat hippocampus.Brain Res. 461:393–396.

    PubMed  Google Scholar 

  • van Lookeren Campagne, M., Lucassen, P.J., Vermeulen, J.P., and Balazs, R. (1995). NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain.Eur. J. Neurosci. 7:1627–1640.

    PubMed  Google Scholar 

  • Vannucci, R.C., and Plum, F. (1975). Pathophysiology of perinatal cerebral hypoxia-ischemia. In E. Gaull, ed.)Biology of Cerebral Dysfunction., Plenum Press, New York, pp. 1–45.

    Google Scholar 

  • Vannucci, R.C., Lyons, D.T., and Vasta, F. (1988). Regional cerebral blood flow during hypoxia-ischemia in immature rats.Stroke 19:245–250.

    PubMed  Google Scholar 

  • Vannucci, R.C. (1989). Acute perinatal brain injury: hypoxia-ischemia. In (W.R. Cohen, D.B. Acker and E.A. Friedman, eds.),Management of Labor, Aspen Publishers, Rockville, pp. 183–244.

    Google Scholar 

  • Volpe, J.J. (1994).Neurology of the Newborn., W.B. Saunders Company, Philadelphia.

    Google Scholar 

  • Zängerle, L., Cuenod, M., Winterhalter, K.H. and Do, K.Q. (1992). Screening of thiol compounds: depolarization-induced release of glutathione and cysteine from rat brain slices.J. Neurochem. 59:181–189.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puka-Sundvall, M., Gilland, E., Bona, E. et al. Development of brain damage after neonatal hypoxia-ischemia: Excitatory amino acids and cysteine. Metab Brain Dis 11, 109–123 (1996). https://doi.org/10.1007/BF02069499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069499

Keywords

Navigation