Skip to main content

Advertisement

Log in

Identification of Non-excitatory Amino Acids and Transporters Mediating the Irreversible Synaptic Silencing After Hypoxia

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The contribution of excitatory amino acids (AA) to ischemic brain injury has been widely described. In addition, we reported that a mixture of non-excitatory AA at plasmatic concentrations turns irreversible the depression of synaptic transmission caused by hypoxia. Here, we describe that the presence of seven non-excitatory AA (L-alanine, L-glutamine, glycine, L-histidine, L-serine, taurine, and L-threonine) during hypoxia provokes an irreversible neuronal membrane depolarization, after an initial phase of hyperpolarization. The collapse of the membrane potential correlates with a great increase in fiber volley amplitude. Nevertheless, we show that the presence of all seven AA is not necessary to cause the irreversible loss of fEPSP after hypoxia and that the minimal combination of AA able to provoke a solid, replicable effect is the mixture of L-alanine, glycine, L-glutamine, and L-serine. Additionally, L-glutamine seems necessary but insufficient to induce these harmful effects. We also prove that the deleterious effects of the AA mixtures on field potentials during hypoxia depend on both the identity and concentration of the individual AA in the mixture. Furthermore, we find that the accumulation of AA in the whole slice does not determine the outcome caused by the AA mixtures on the synaptic transmission during hypoxia. Finally, results obtained using pharmacological inhibitors and specific substrates of AA transporters suggest that system N and the alanine-serine-cysteine transporter 2 (ASCT2) participate in the non-excitatory AA-mediated deleterious effects during hypoxia. Thus, these AA transporters might represent therapeutical targets for the treatment of brain ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in this study are available on reasonable request from the corresponding author.

References

  1. Ahad MA, Kumaran KR, Ning T, Mansor NI, Effendy MA, Damodaran T, Lingam K, Wahab HA, Nordin N, Liao P, Müller CP, Hassan Z. Insights into the neuropathology of cerebral ischemia and its mechanisms. Rev Neurosci. 2020;31:521–38.

    Article  CAS  PubMed  Google Scholar 

  2. Álvarez-Merz I, Fomitcheva IV, Sword J, Hernández-Guijo JM, Solís JM, Kirov SA. Novel mechanism of hypoxic neuronal injury mediated by non-excitatory amino acids and astroglial swelling. Glia. 2022;70:2108–30.

    Article  PubMed  Google Scholar 

  3. Álvarez-Merz I, Luengo JG, Muñoz MD, Hernández-Guijo JM, Solís JM. Hypoxia-induced depression of synaptic transmission becomes irreversible by intracellular accumulation of non-excitatory amino acids. Neuropharmacology. 2021;190: 108557.

    Article  PubMed  Google Scholar 

  4. Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98:641–53.

    Article  CAS  PubMed  Google Scholar 

  5. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;43:1369–74.

    Article  CAS  PubMed  Google Scholar 

  6. Bröer A, Wagner C, Lang F, Bröer S. Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J. 2000;346(Pt 3):705–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bröer S. The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch. 2014;466:155–72.

  8. Chebabo SR, Hester MA, Jing J, Aitken PG, Somjen GG. Interstitial space, electrical resistance and ion concentrations during hypotonia of rat hippocampal slices. J Physiol. 1995;487(Pt 3):685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choi DW. Excitotoxicity: still hammering the ischemic brain in 2020. Front Neurosci. 2020;14:579953.

  10. Dale N, Pearson T, Frenguelli BG. Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol. 2000;526(Pt 1):143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci. 2008;35:161–74.

    Article  PubMed  Google Scholar 

  12. Dolgodilina E, Imobersteg S, Laczko E, Welt T, Verrey F, Makrides V. Brain interstitial fluid glutamine homeostasis is controlled by blood-brain barrier SLC7A5/LAT1 amino acid transporter. J Cereb Blood Flow Metab. 2016;36(11):1929–41.

    Article  PubMed  Google Scholar 

  13. Ennis SR, Kawai N, Ren XD, Abdelkarim GE, Keep RF. Glutamine uptake at the blood-brain barrier is mediated by N-system transport. J Neurochem. 1998;71:2565–73.

    Article  CAS  PubMed  Google Scholar 

  14. Esslinger CS, Cybulski KA, Rhoderick JF. Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorg Med Chem. 2005;13:1111–8.

    Article  CAS  PubMed  Google Scholar 

  15. Foster AC, Farnsworth J, Lind GE, Li YX, Yang JY, Dang V, Penjwini M, Viswanath V, Staubli U, Kavanaugh MP. D-serine is a substrate for neutral amino acid transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and is transported by both subtypes in rat hippocampal astrocyte cultures. PLoS ONE. 2016;11(6): e0156551.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Foster AC, Rangel-Diaz N, Staubli U, Yang JY, Penjwini M, Viswanath V, Li YX. Phenylglycine analogs are inhibitors of the neutral amino acid transporters ASCT1 and ASCT2 and enhance NMDA receptor-mediated LTP in rat visual cortex slices. Neuropharmacology. 2017;126:70–83.

    Article  CAS  PubMed  Google Scholar 

  17. Gliddon CM, Shao Z, Lemaistre JL, Anderson CM. Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem. 2009;108(2):372–83.

    Article  CAS  PubMed  Google Scholar 

  18. Grimwood S, Foster AC, Kemp JA. The pharmacological specificity of N-methyl-D-aspartate receptors in rat cerebral cortex: correspondence between radioligand binding and electrophysiological measurements. Br J Pharmacol. 1991;103:1385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jarosch MS, Gebhardt C, Fano S, Huchzermeyer C, Ul Haq R, Behrens CJ, Heinemann U. Early adenosine release contributes to hypoxia-induced disruption of stimulus-induced sharp wave-ripple complexes in rat hippocampal area CA3. Eur J Neurosci. 2015;42(2):1808–17.

  20. Jayakumar AR, Rao KV, Murthy CHR, Norenberg MD. Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int. 2006;48(6–7):623–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kanthan R, Shuaib A, Griebel R, Miyashita H. Intracerebral human microdialysis. In vivo study of an acute focal ischemic model of the human brain. Stroke. 1995;26:870–3.

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan E, Zubedat S, Radzishevsky I, Valenta AC, Rechnitz O, Sason H, Sajrawi C, Bodner O, Konno K, Esaki K, Derdikman D, Yoshikawa T, Watanabe M, Kennedy RT, Billard JM, Avital A, Wolosker H. ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment. Proc Natl Acad Sci U S A. 2018;115:9628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keep RF, Xiang J. N-system amino acid transport at the blood–CSF barrier. J Neurochem. 1995;65:2571–6.

    Article  CAS  PubMed  Google Scholar 

  24. Krnjevic K. Electrophysiology of cerebral ischemia. Neuropharmacology. 2008;55:319–33.

  25. Liu QR, López-Corcuera B, Nelson H, Mandiyan S, Nelson N. Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc Natl Acad Sci U S A. 1992;89:12145–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luengo JG, Muñoz MD, Álvarez-Merz I, Herranz AS, González JC, Martín del Río R, Hernández-Guijo JM, Solís JM. Intracellular accumulation of amino acids increases synaptic potentials in rat hippocampal slices. Amino Acids. 2019;51:1337–51.

  27. Maucler C, Pernot P, Vasylieva N, Pollegioni L, Marinesco S. In vivo D-serine hetero-exchange through alanine-serine-cysteine (ASC) transporters detected by microelectrode biosensors. ACS Chem Neurosci. 2013;4:772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meier C, Ristic Z, Klauser S, Verrey F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. Embo j. 2002;21:580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mikou A, Cabayé A, Goupil A, Bertrand HO, Mothet JP, Acher FC. Asc-1 transporter (SLC7A10): homology models and molecular dynamics insights into the first steps of the transport mechanism. Sci Rep. 2020;10:3731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pace JR, Martin BM, Paul SM, Rogawski MA. High concentrations of neutral amino acids activate NMDA receptor currents in rat hippocampal neurons. Neurosci Lett. 1992;141:97–100.

    Article  CAS  PubMed  Google Scholar 

  31. Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150:633–46.

    Article  CAS  PubMed  Google Scholar 

  32. Perucho J, Gonzalo-Gobernado R, Bazan E, Casarejos MJ, Jiménez-Escrig A, Asensio MJ, Herranz AS. Optimal excitation and emission wavelengths to analyze amino acids and optimize neurotransmitters quantification using precolumn OPA-derivatization by HPLC. Amino Acids. 2015;47:963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pineda M, Fernández E, Torrents D, Estévez R, López C, Camps M, Lloberas J, Zorzano A, Palacín M. Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem. 1999;274:19738–44.

    Article  CAS  PubMed  Google Scholar 

  34. Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H. Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci. 2013;33:3533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosenberg D, Kartvelishvily E, Shleper M, Klinker CM, Bowser MT, Wolosker H. Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration. Faseb j. 2010;24:2951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roux MJ, Supplisson S. Neuronal and glial glycine transporters have different stoichiometries. Neuron. 2000;25:373–83.

    Article  CAS  PubMed  Google Scholar 

  37. Sason H, Billard JM, Smith GP, Safory H, Neame S, Kaplan E, Rosenberg D, Zubedat S, Foltyn VN, Christoffersen CT, Bundgaard C, Thomsen C, Avital A, Christensen KV, Wolosker H. Asc-1 transporter regulation of synaptic activity via the tonic release of d-serine in the forebrain. Cereb Cortex. 2017;27:1573–87.

    PubMed  Google Scholar 

  38. Schulte ML, Khodadadi AB, Cuthbertson ML, Smith JA, Manning HC. 2-Amino-4-bis(aryloxybenzyl)aminobutanoic acids: a novel scaffold for inhibition of ASCT2-mediated glutamine transport. Bioorg Med Chem Lett. 2016;26:1044–7.

    Article  CAS  PubMed  Google Scholar 

  39. Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999;274:19745–51.

    Article  CAS  PubMed  Google Scholar 

  40. Simon RP, Swan JH, Griffiths T, Meldrum BS. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science. 1984;226:850–2.

    Article  CAS  PubMed  Google Scholar 

  41. Suárez LM, Solís JM. Taurine potentiates presynaptic NMDA receptors in hippocampal Schaffer collateral axons. Eur J Neurosci. 2006;24:405–18.

    Article  PubMed  Google Scholar 

  42. Suárez LM, Suárez F, del Olmo N, Ruiz M, González-Escalada JR, Solís JM. Presynaptic NMDA autoreceptors facilitate axon excitability: a new molecular target for the anticonvulsant gabapentin. Eur J Neurosci. 2005;21:197–209.

    Article  PubMed  Google Scholar 

  43. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47:122–9.

    Article  CAS  PubMed  Google Scholar 

  44. Traynelis SF, Dingledine R. Role of extracellular space in hyperosmotic suppression of potassium-induced electrographic seizures. J Neurophysiol. 1989;61:927–38.

    Article  CAS  PubMed  Google Scholar 

  45. Utsunomiya-Tate N, Endou H, Kanai Y. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem. 1996;271:14883–90.

    Article  CAS  PubMed  Google Scholar 

  46. Wilson CS, Bach MD, Ashkavand Z, Norman KR, Martino N, Adam AP, Mongin AA. Metabolic constraints of swelling-activated glutamate release in astrocytes and their implication for ischemic tissue damage. J Neurochem. 2019;151:255–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamakami J, Sakurai E, Sakurada T, Maeda K, Hikichi N. Stereoselective blood-brain barrier transport of histidine in rats. Brain Res. 1998;812:105–12.

    Article  CAS  PubMed  Google Scholar 

  48. Yang J, Vitery MDC, Chen J, Osei-Owusu J, Chu J, Qiu Z. Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron. 2019;102:813–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zetterling M, Hillered L, Samuelsson C, Karlsson T, Enbland P, Ronne-Engström E. Temporal patterns of interstitial pyruvate and amino acids after subarachnoid haemorrhage are related to the level of consciousness--a clinical microdialysis study. Acta Neurochir (Wien), 2009;151:771–80.

  50. Zielińska M, Popek M, Albrecht J. Roles of changes in active glutamine transport in brain edema development during hepatic encephalopathy: an emerging concept. Neurochem Res. 2014;39:599–604.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank María José Asensio for amino acid analysis and José Barbado for technical assistance. We thank Prof. Sergei A. Kirov, Medical College of Georgia at Augusta University, GA, USA, for his valuable advice and comments.

Funding

This work was supported by MICIU (Ref.: PID2021-128133NB-I00/AEI/FEDER10.13039/501100011033). IAM was supported by a predoctoral fellowship from “Ministerio de Universidades” of the Spanish government (Ref.: FPU16/06368).

Author information

Authors and Affiliations

Authors

Contributions

Iris Álvarez-Merz, Jesús M. Hernández-Guijo and José M. Solís designed experiments; Iris Álvarez-Merz, María-Dolores Muñoz and José M. Solís performed experiments and analysed data; Iris Álvarez-Merz and José M. Solís wrote the manuscript, and all authors edited and approved the manuscript before submission.

Corresponding author

Correspondence to Jesús M. Hernández-Guijo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Merz, I., Muñoz, MD., Hernández-Guijo, J.M. et al. Identification of Non-excitatory Amino Acids and Transporters Mediating the Irreversible Synaptic Silencing After Hypoxia. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01192-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01192-y

Keywords

Navigation