Skip to main content
Log in

Parent-offspring conflict over clutch size

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

We present a model for sexually-reproducing diploids in which a female can produce a variable (generally large) clutch size, where the sibs then compete over some fixed resource, and where certain offspring use siblicide to reduce the primary clutch/brood size created by the mother. Where siblicide involves neither direct energy loss (e.g. fighting cost) nor gain (e.g. cannibalism) to an offspring, the optimal clutch size for an offspring can differ from the optimum for the mother, i.e. there can be parent-offspring conflict over clutch size. The magnitude of this evolutionary conflict (measured in terms of difference between clutch size optima) increases with multipaternity of the brood and with the steepness of the initial decline in offspring survivorship (through sib-competition as further offspring are added to the brood). However, the disparity in clutch size optima may not be great. Where the integer clutch size optima are the same, there will clearly be no conflict. Where this differs, resolution of the evolutionary conflict could involve much apparent behavioral conflict, commonly manifest as siblicidal aggression.

The ESS (evolutionarily stable strategy) for such a game will depend upon the direct costs and benefits of siblicide, as well as on the indirect costs to sibs via relatedness. If the only costs of siblicide arise through relatedness, then offspring will ‘win’ in the sense that the eventual clutch size will match the offspring optimum. Whether or not the mother will produce this clutch size depends on the mechanism controlling siblicide. A siblicidal ESS will occur when offspring are programmed to kill a fixed number/proportion of a brood (‘victim-based siblicide’), but not if programmed to reduce the sibship to the offspring optimum (‘survivor-based siblicide’). With survivor-based siblicide, the mother can do no better than to lay the offsprings' optimal clutch size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begon, M. and Parker, G. A. (1986) Should egg size and clutch size decrease with age?Oikos 47, 293–302.

    Google Scholar 

  • Bortolotti, G. R. (1986) Evolution of growth rates in eagles: sibling competition vs. energy considerations.Ecology 67, 182–94.

    Google Scholar 

  • Bull, J. J. (1985) Models of parent-offspring conflict: effect of environmental variance.Heredity 55, 1–8.

    PubMed  Google Scholar 

  • Cash, K. J. and Evans, R. M. (1986) Brood reduction in the American white pelican (Pelecanus erythrorhynchos).Behav. Ecol. Sociobiol. 18, 413–18.

    Google Scholar 

  • Charnov, E. L. and Skinner, S. W. (1984) Evolution of host selection and clutch size in parasitoid wasps.Florida Entom. 67, 5–21.

    Google Scholar 

  • Charnov, E. L. and Skinner, S. W. (1985) Complementary approaches to the understanding of parasitoid oviposition decisions.Environ. Ent. 14, 383–91.

    Google Scholar 

  • Crossner, K. A. (1977) Natural selection and clutch size in the European starling.Ecology 58, 885–92.

    Google Scholar 

  • Drummond, H., Gonzalez, E. and Osorno, J. (1986) Parent-offspring cooperation in the blue-footed booby (Sula nebouxii): social roles in infanticidal brood reduction.Behav. Ecol. Sociobiol. 19, 365–72.

    Google Scholar 

  • Edwards, T. C. Jr. and Collopy, M. W. (1983) Obligate and facultative brood reduction in eagles: an examination of factors that influence fratricide.Auk 100, 630–5.

    Google Scholar 

  • Eickwort, K. R. (1973) Cannibalism and kin selection inLabidomera clivicollis (Coleoptera, Chrysomelidae).Amer. Nat. 107, 452–3.

    Google Scholar 

  • Gargett, V. (1977) A 13-year population study of the black eagles in the Matopos, Rhodesia. 1964–1976.Ostrich 48, 17–27.

    Google Scholar 

  • Gargett, V. (1978) Sibling aggression in the black eagle in the Matopos, Rhodesia.Ostrich 49, 57–63.

    Google Scholar 

  • Godfray, H. C. J. (1986a) Clutch size in a leaf-mining fly (Pegomya nigritarsis: Antromyridae).Ecol. Ent. 11, 75–81.

    Google Scholar 

  • Godfray, H. C. J. (1986b) Models for clutch size and sex ratio with sibling interaction.Theor. Popul. Biol. 30, 215–31.

    Google Scholar 

  • Godfray, H. C. J. (1987) Genetic models of clutch size evolution in parasitic wasps.Amer. Nat. 129, 221–33.

    Google Scholar 

  • Graves, J., Whiten, A. and Heinzi, P. (1984) Why does the herring gull lay three eggs?Animal Behaviour 32, 798–805.

    Google Scholar 

  • Iwasa, Y., Suzuki, Y. and Matsuda, H. (1984) Theory of oviposition strategy of parasitoids. I. Effect of mortality and limited egg number.Theor. Popul. Biol. 26, 205–27.

    PubMed  Google Scholar 

  • Kepler, C. B. (1969) Breeding biology of the blue-faced boobySula dactylatra personata on Green Island, Kure Atoll.Publ. Nuttall. Ornith. Club, No. 8.

  • Lack, D. (1947) The significance of clutch size.Ibis 89, 309–52.

    Google Scholar 

  • Lack, D. (1954)The Natural Regulation of Animal Numbers, Oxford University Press, Oxford.

    Google Scholar 

  • Lazarus, J. and Inglis, I. (1986) Shared and unshared parental investment, parent-offspring conflict, and brood size.Anim. Behav. 34, 1791–1804.

    Google Scholar 

  • Macnair, M. R. and Parker, G. A. (1978a) Models of parent-offspring conflict. II. Promiscuity.Anim. Behav. 26, 111–22.

    PubMed  Google Scholar 

  • Macnair, M. R. and Parker, G. A. (1978b) Models of parent-offspring conflict. III. Intra-brood conflict.Anim. Behav. 27, 1202–9.

    Google Scholar 

  • Maynard Smith, J. (1974) The theory of games and the evolution of animal conflicts.J. theor. Biol. 47, 209–21.

    PubMed  Google Scholar 

  • Maynard Smith, J. (1982)Evolution and the Theory of Games, Cambridge University Press, Cambridge.

    Google Scholar 

  • Mock, D. W. (1984) Infanticide, siblicide, and avian nestling mortality in birds. InInfanticide: Comparative and Evolutionary Perspectives (G. Hausfater and S. B. Hardy, eds) pp. 3–30. Aldine Pub. Co., New York.

    Google Scholar 

  • Mock, D. W. (In press) Siblicide, parent-offspring conflict, and unequal parental investment.Behav. Ecol. Sociobiol.

  • Mock, D. W. and Parker, G. A. (1986) Advantages and disadvantages of brood reduction in egrets and herons.Evolution 40, 459–70.

    Google Scholar 

  • Mock, D. W., Lamey, T. C. and Ploger, B. J. (In press) Proximate and ultimate roles of food amount in regulating egret sibling aggression.Ecology.

  • O'Connor, R. J. (1978) Brood reduction in birds: Selection for fratricide, infanticide and suicide?Anim. Behav. 26, 79–96.

    Google Scholar 

  • Parker, G. A. (1970) Sperm competition and its evolutionary consequences in the insects.Biol. Rev. 45, 525–67.

    Google Scholar 

  • Parker, G. A. (1985) Models of parent-offspring conflict. V. Effects of the behaviour of the two parents.Anim. Behav. 33, 519–33.

    Google Scholar 

  • Parker, G. A. and Macnair, M. R. (1978) Models of parent-offspring conflict. I. Monogamy.Anim. Behav. 96, 97–110.

    Google Scholar 

  • Parker, G. A. and Macnair, M. R. (1979) Models of parent-offspring conflict. IV. Suppression: evolutionary retaliation by the parent.Anim. Behav. 27, 1210–35.

    Google Scholar 

  • Parker, G. A. and Courtney, S. P. (1984) Models of clutch size in insect oviposition.Theor. Popul. Biol. 26, 27–48.

    Google Scholar 

  • Parker, G. A. and Begon, M. (1986) Optimal egg size and clutch size: effects of environmental and maternal phenotype.Amer. Nat. 128, 573–92.

    Google Scholar 

  • Ploger, B. J. and Mock, D. W. (1986) Role of sibling aggression in the distribution of food to nestling cattle egrets (Bubulcus ibis).Auk 103, 768–76.

    Google Scholar 

  • Ricklefs, R. (1982) Some considerations on sibling competition and avian growth rates.Auk 99, 141–7.

    Google Scholar 

  • Skinner, S. W. (1985) Clutch size as an optimal foraging problem for insects.Behav. Ecol. Sociobiol. 17, 231–8.

    Google Scholar 

  • Smith, R. H. and Lessells, C. M. (1985) Oviposition, ovicide and larval competition in granivorous insects. InBehavioural Ecology: Ecological Consequences of Adaptive Behaviour (R. M. Sibly and R. H. Smith, eds) pp. 423–48. Blackwells, Oxford.

    Google Scholar 

  • Smith, R. L., ed. (1984)Sperm Competition and the Evolution of Animal Mating Systems, Academic Press, New York.

    Google Scholar 

  • Stamps, J. A. and Metcalf, R. A. (1980) Parent-offspring conflict. InSociobiology: Beyond Naturel Nurture? (G. W. Barlow and J. Silverberg, eds) pp. 589–618. Westview Press, Boulder, CO.

    Google Scholar 

  • Stamps, J. A., Metcalf, R. A. and Krishnan, V. V. (1978) A genetic analysis of parent-offspring conflict.Behav. Ecol. Sociobiol. 3, 367–92.

    Google Scholar 

  • Stinson, C. H. (1979) On the selective advantage of fratricide in raptors.Evolution 33, 1219–25.

    Google Scholar 

  • Stonehouse, B. and Perrins, C. eds (1977)Evolutionary Ecology, Macmillan, London.

    Google Scholar 

  • Trivers, R. L. (1972) Parental investment and sexual selection. InSexual Selection and the Descent of Man, 1871–1971 (B. Campbell, ed.) pp. 136–79. Aldine Atherton, Chicago.

    Google Scholar 

  • Trivers, R. L. (1974) Parent-offspring conflict.Amer. Zool. 14, 249–64.

    Google Scholar 

  • Waage, J. K. and Ng, S. M. (1984) The reproductive strategy of a parasitic wasp. I. Optimal progeny and sex allocation inTrichogramma evanescens.J. Anim. Ecol. 53, 401–16.

    Google Scholar 

  • Waage, J. K. and Godfray, H. C. J. (1985) Reproductive strategies and population ecology of insect parasitoids. InBehavioural Ecology, Ecological Consequences of Adaptive Behaviour (R. M. Sibly and R. H. Smith, eds) pp. 449–70. Blackwells, Oxford.

    Google Scholar 

  • Werschkul, D. R. and Jackson, J. A. (1979) Sibling competition and avian growth rates.Ibis 121, 97–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, G.A., Mock, D.W. Parent-offspring conflict over clutch size. Evol Ecol 1, 161–174 (1987). https://doi.org/10.1007/BF02067398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067398

Keywords

Navigation