Skip to main content
Log in

A model for the adaptive significance of partial reproductive synchrony within social units

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Synchronized breeding in social units of animals (like colonies and herds) is often interpreted as a strategy against predators (predator satiation), and one might expect to find little variation in the relative date of starting reproduction. However, data on many colonies or herds show only partial synchrony. Our hypothesis is that this is not simply unavoidable variance but may be an adaption against predators. We consider the case where the members of a social unit can avoid predation actively by cooperation. If the contribution to this predator avoidance is different for individuals engaged in different phases of reproduction, our model shows that partial synchrony is of adaptive significance. Data on the black-headed gull (Larus ridibundus) are used to test the model's predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashmole, N. P. (1962) The Black Noddy,Anous tenuirostris, on Ascension Island.Ibis 103, 235–73.

    Google Scholar 

  • Brandl, R. Warum leben einige Vogelarten in Kolonien? Beziehungen zwischen Koloniegröße, Nahrungsressource und Verhalten am Beispiel der Lachmöwe.Verhandlungen der ornithologischen Gesellschaft in Bayern 24, in press.

  • Brown, R. G. B. (1967) Breeding success and population growth in a colony of Herring and Lesser Blackbacked Gulls,Larus argentatus andL. fuscus.Ibis 109, 502–15.

    Google Scholar 

  • Burger, J. (1976) Nest density of the black-headed gull in relation to vegetation.Bird Study 23, 27–32.

    Google Scholar 

  • Cooper, J. A. (1978) The history of breeding biology of the Canada Geese of Marshy Point, Manitoba.Wildlife Monographs, No. 61.

  • Darling, F. F. (1938)Bird Flocks and the Breeding Cycle. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Findlay, C. S. and Cooke, F. (1982a) Breeding synchrony in the Lesser Snow Goose (Anser caerulescens caerulescens). I. Genetic and environmental components of hatch date variability and their effects on hatch synchrony.Evolution 36, 342–51.

    Google Scholar 

  • Findlay, C. S. and Cooke, F. (1982b) Synchrony in the Lesser Snow Goose (Anser caerulescens caerulescens). II. The adaptive value of reproductive synchrony.Evolution 36, 786–99.

    Google Scholar 

  • Flegg, J. J. M. and Cox, C. J. (1975) Mortality in the black-headed gull.Brit. Birds 68, 437–49.

    Google Scholar 

  • Glutz, U. N. von Blotzheim and Bauer, K. M. (1982)Handbuch der Vögel Mitteleuropas, Vol. 8. Akademische Verlagshandlung, Wiesbaden.

    Google Scholar 

  • Gochfeld, M. (1980) Mechanisms and adaptive value of reproductive synchrony in colonial seabirds. InBehavior of Marine Animals (J. Burger, B. L. Olla and H. E. Winn, eds) pp. 207–70. Plenum Press, New York, USA.

    Google Scholar 

  • Gorke, M. and Brandl, R. (1986) How to live in colonies: spatial foraging strategies of the black-headed gull.Oecologia 70, 288–90.

    Google Scholar 

  • Hamilton, W. D. (1971) Geometry of the selfish herd.J. Theor. Biol. 31, 295–311.

    PubMed  Google Scholar 

  • Kruuk, H. (1964) Predators and anti-predator behaviour of the black-headed gull (Larus ridibundus).Behaviour (Suppl.)11, 1–129.

    Google Scholar 

  • Lofts, B. and Murton, R. K. (1973) Reproduction in birds. InAvian Biology (D. S. Farner and R. J. King, eds) pp. 1–107. Academic Press, NY, USA.

    Google Scholar 

  • Maynard Smith, J. (1978) Optimization theory in evolution.Ann. Rev. Ecol. Syst. 9, 31–56.

    Google Scholar 

  • Nisbet, I. C. T. (1975) Selective effects of predation in a tern colony.Condor 77, 221–6.

    Google Scholar 

  • Parsons, J. (1972) Egg size, laying date and incubation period in the Herring Gull.Ibis 114, 536–41.

    Google Scholar 

  • Patterson, I. J. (1965) Timing and spacing of broods in the Black-headed Gull (Larus ridibundus).Ibis 107, 433–59.

    Google Scholar 

  • Pierre, D. A. (1969)Optimization Theory with Applications. John Wiley, London, UK.

    Google Scholar 

  • Raveling, D. G. (1978) Timing of egg laying by northern geese.Auk 95, 294–303.

    Google Scholar 

  • Reed, J. and Stenseth, N. (1984) On evolutionarily stable strategies.J. Theor. Biol. 108, 491–508.

    Google Scholar 

  • Stenseth, N. (1985) On the evolution of cannibalism.J. Theor. Biol. 115, 161–77.

    Google Scholar 

  • Ytreberg, N-J. (1956) Contribution to the breeding biology of the black-headed gull in Norway.Nytt Magazin of Zoology 4, 5–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wissel, C., Brandl, R. A model for the adaptive significance of partial reproductive synchrony within social units. Evol Ecol 2, 102–114 (1988). https://doi.org/10.1007/BF02067271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067271

Keywords

Navigation