Skip to main content
Log in

A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Evolutionary theory predicts low levels of genetic polymorphism and high levels of self-compatibility in plant species with small ranges and few individuals. To test these predictions, I compared published data on electrophoretically detectable genetic variation and breeding systems for geographically restricted and widespread congeners in eleven genera. The restricted species exhibit significantly fewer polymorphic loci and alleles per polymorphic locus than do their widespread congeners. Although some rare species are genetically impoverished, others are nearly as polymorphic as their widespread congeners. The restricted species and their widespread congeners do not differ consistently with respect to breeding systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F.W., Knudsen, K.L. and Blake, G.M. (1982) Frequencies of null alleles at enzyme loci in natural populations of ponderosa and red pine.Genetics 100, 497–504.

    Google Scholar 

  • Babbel, G.R. and Selander, R.K. (1974) Genetic variability in edaphically restricted and widespread plant species.Evolution 28, 619–30.

    Google Scholar 

  • Baker, H.G. (1955) Self-compatibility and establishment after ‘long-distance’ dispersal.Evolution 9, 347–8.

    Google Scholar 

  • Bonnell, M.L. and Selander, R.K. (1974) Elephant seals: genetic variation and near extinction.Science 184, 908–9.

    PubMed  Google Scholar 

  • Bradshaw, M.E. (1978) Plant population studies and their relevance to nature conservation.Biological Conservation 14, 223–41.

    Google Scholar 

  • Brown, A.H.D. (1979) Enzyme polymorphism in plant populations.Theoretical Population Biology 15, 1–42.

    Google Scholar 

  • Cain, S.A. (1944)Foundations of Plant Geography. Harper, New York.

    Google Scholar 

  • Carson, H.L. (1983) The genetics of the founder effect. InGenetics and Conservation: a Reference for Managing Wild Animal and Plant Populations (C.M. Schonewald-Cox, S.M. Chambers, B. MacBryde and W.L. Thomas, eds.) pp. 189–200. Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Clegg, M.T. and Brown, A.H.D. (1983) The founding of plant populations. InGenetics and Conservation: a Reference for Managing Wild Animal and Plant Populations (C.M. Schonewald-Cox, S.M. Chambers, B. MacBryde and W.L. Thomas, eds.) pp. 216–28. Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Cleland, R.E. (1968) Cytogenetic studies onOenothera, subgenusRaimannia.Japanese Journal of Genetics 43, 329–34.

    Google Scholar 

  • Cleland, R.E. (1972) Oenothera:Cytogenetics and Evolution. Academic Press, New York.

    Google Scholar 

  • Coates, D.J. (1981) Chromosome, morphometric and breeding system studies in theStylidium caricifolium species complex (Stylidiaceae).Australian Journal of Botany 29, 397–417.

    Google Scholar 

  • Critchfield, W.B. (1984) Impact of the Pleistocene on the genetic structure of North American conifers. InProceedings of the Eighth North American Forest Biology Workshop (R.M. Lanner, ed.) pp. 70–118. Logan, Utah.

    Google Scholar 

  • Davis, M.B. (1976) Pleistocene biogeography of temperate deciduous forests.Geoscience and Man 13, 13–26.

    Google Scholar 

  • Drury, W.H. (1974) Rare species.Biological Conservation 6, 162–9.

    Google Scholar 

  • Ellstrand, N.C. and Levin, D.A. (1980) Recombination system and population structure inOenothera.Evolution 34, 923–33.

    Google Scholar 

  • Emerson, S. (1939) A preliminary survey of theOenothera organensis population.Genetics 24, 538–52.

    Google Scholar 

  • Fowler, D.P. and Morris, R.W. (1977) Genetic diversity in red pine: evidence for low genic heterozygosity.Canadian Journal of Forest Research 7, 343–7.

    Google Scholar 

  • Frankel, O.H. (1983) The place of management in conservation. InGenetics and Conservation: a Reference for Managing Wild Animal and Plant Populations (C.M. Schonewald-Cox, S.M. Chambers, B. MacBryde and W.L. Thomas, eds.) pp. 1–14. Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Frankel, O.H. and Soulé, M.E. (1981)Conservation and Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Franklin, I.R. (1980) Evolutionary change in small populations. InConservation Biology: an Evolutionary-Ecological Approach (M.E. Soulé and B.A. Wilcox, eds.) pp. 135–49. Sinauer Associates, Sunderland, Massachussetts.

    Google Scholar 

  • Gentry, A.H. (1986) Endemism in tropical versus temperate plant communities. InConservation Biology: The Science of Scarcity and Diversity (M.E. Soulé, ed.) pp. 153–81. Sinauer Associates, Sunderland, Massachussetts.

    Google Scholar 

  • Gottlieb, L.D. (1973a) Enzyme differentiation and phylogeny inClarkia franciscana, Clarkia rubicunda, andClarkia amoena.Evolution 27, 205–14.

    Google Scholar 

  • Gottlieb, L.D. (1973b) Genetic differentiation, sympatric speciation, and the origin of a diploid species ofStephanomeria.American Journal of Botany 60, 545–53.

    Google Scholar 

  • Gottlieb, L.D. (1979) The origin of phenotype in a recently evolved species. InTopics in Plant Population Biology (O.T. Solbrig, S. Jain, G.B. Johnson and P.H. Raven, eds.) pp. 264–86. Columbia University Press, New York.

    Google Scholar 

  • Gottlieb, L.D. (1981) Electrophoretic evidence and plant populations.Progress in Phytochemistry 7, 1–46.

    Google Scholar 

  • Gottlieb, L.D. and Pilz, G. (1976) Genetic similarity betweenGaura longiflora and its obligately outcrossing derivativeG. demareei.Systematic Botany 1, 181–7.

    Google Scholar 

  • Gottlieb, L.D., Warwick, S.I. and Ford, V.S. (1985) Morphological and electrophoretic divergence betweenLayia discoidea andL. glandulosa.Systematic Botany 10, 484–95.

    Google Scholar 

  • Grant, V. (1981)Plant Speciation (2nd edn.) Columbia University Press, New York.

    Google Scholar 

  • Griggs, F.T. and Jain, S.K. (1983) Conservation of vernal pool plants in California. II. Population biology of a rare and unique grass genusOrcuttia.Biological Conservation 27, 171–93.

    Google Scholar 

  • Guries, R.P. and Ledig, F.T. (1982) Genetic diversity and population structure in pitch pine (Pinus rigida Mill.).Evolution 36, 387–402.

    Google Scholar 

  • Hamrick, J.L. (1983) The distribution of genetic variation within and among natural plant populations. InGenetics and Conservation: a Reference for Managing Wild Animal and Plant Populations (C.M. Schonewald-Cox, S.M. Chambers, B. MacBryde and W.L. Thomas, eds.) pp. 335–48. Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Hamrick, J.L., Linhart, Y.B. and Mitton, J.B. (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants.Annual Review of Ecology and Systematics 10, 173–200.

    Google Scholar 

  • Hamrick, J.L., Mitton, J.B. and Linhart, Y.B. (1981) Levels of genetic variation in trees: influence of life history characteristics. InIsozymes of North American Forest Trees and Forest Insects (M.T. Conkle, ed.) pp. 35–41. US Forest Service, Berkeley, California.

    Google Scholar 

  • Harding, J. and Barnes, K. (1977) Genetics ofLupinus. X. Genetic variability, heterozygosity and outcrossing in colonial populations ofLupinus succulentus.Evolution 31, 247–55.

    Google Scholar 

  • Harding, J., Mankinen, C.B. and Elliott, M. (1974) Genetics ofLupinus. VII. Outcrossing, autofertility, and variability in natural populations of the Nanus group.Taxon 23, 729–38.

    Google Scholar 

  • Harper, J.L. (1981) The meanings of rarity. InThe Biological Aspects of Rare Plant Conservation (H. Synge, ed.) pp. 189–203. Wiley, Chichester.

    Google Scholar 

  • Harper, K.T. (1979) Some reproductive and life history characteristics of rare plants and implications of management.Great Basin Naturalist Memoirs 3, 129–37.

    Google Scholar 

  • Hiebert, R.D. and Hamrick, J.L. (1983) Patterns and levels of genetic variation in Great Basin bristlecone pine,Pinus longaeva.Evolution 37, 302–10.

    Google Scholar 

  • Jain, S.K. (1976) The evolution of inbreeding in plants.Annual Review of Ecology and Systematics 7, 469–95.

    Google Scholar 

  • James, S.H. (1982) The relevance of genetic systems inIsotoma petraea to conservation practice. InSpecies at Risk: Research in Australia (R.H. Groves and W.D.L. Ride, eds.) pp. 63–71. Springer-Verlag, Berlin.

    Google Scholar 

  • Karron, J.D. (1987) The pollination ecology of co-occurring geographically restricted and widespread species ofAstragalus (Fabaceae).Biological Conservation (in press).

  • Karron, J.D. Levels of self-compatibility in geographically restricted and widespread species ofAstragalus (Fabaceae). (In preparation.)

  • Karron, J.D., Linhart, Y.B., Chaulk, C.A. and Robertson, C.A. The genetic structure of populations of geographically restricted and widespread species ofAstragalus (Fabaceae). (In preparation.)

  • Kesseli, R.V. and Jain, S.K. (1984) New variation and biosystematic patterns detected by allozyme and morphological comparisons inLimnanthes sect. Reflexae (Limnanthaceae).Plant Systematics and Evolution 147, 133–65.

    Google Scholar 

  • Kesseli, R.V. and Jain, S.K. (1986) Breeding systems and population structure inLimnanthes.Theoretical and Applied Genetics 71, 292–9.

    Google Scholar 

  • Kruckeberg, A.R. and Rabinowitz, D. (1985) Biological aspects of endemism in higher plants.Annual Review of Ecology and Systematics 16, 447–79.

    Google Scholar 

  • Lande, R. and Schemske, D.W. (1985) The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models.Evolution 39, 24–40.

    Google Scholar 

  • Ledig, F.T. (1986) Heterozygosity, heterosis, and fitness in outbreeding plants. InConservation Biology: The Science of Scarcity and Diversity (M. Soulé, ed.) pp. 77–104. Sinauer Associates, Sunderland, Massachussetts.

    Google Scholar 

  • Ledig, F.T. and Conkle, M.T. (1983) Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex. Carr).Evolution 37, 79–85.

    Google Scholar 

  • Levin, D.A. (1984) Genetic variation and divergence in a disjunctPhlox.Evolution 38, 223–5.

    Google Scholar 

  • Levin, D.A., Ritter, K. and Ellstrand, N.C. (1979) Protein polymorphism in the narrow endemicOenothera organensis.Evolution 33, 534–42.

    Google Scholar 

  • Levy, M. and Levin, D.A. (1975) Genic heterozygosity and variation in permanent translocation heterozygotes of theOenothera biennis complex.Genetics 79, 493–512.

    Google Scholar 

  • Loveless, M.D. and Hamrick, J.L. (1984) Ecological determinants of genetic structure in plant populations.Annual Review of Ecology and Systematics 15, 65–95.

    Google Scholar 

  • McClenaghan, L.R. and Beauchamp, A.C. (1986) Low genic differentiation among isolated populations of the California fan palm (Washingtonia filifera).Evolution 40, 315–22.

    Google Scholar 

  • McLeod, M.J., Guttman, S.I., Eshbaugh, W.H. and Rayle, R.E. (1983) An electrophoretic study of evolution inCapsicum (Solanaceae).Evolution 37, 562–74.

    Google Scholar 

  • Meagher, T.R., Antonovics, J. and Primack, R. (1978) Experimental ecological genetics inPlantago. III. Genetic variation and demography in relation to survival ofPlantago cordata, a rare species.Biological Conservation 14, 243–57.

    Google Scholar 

  • Mirov, N.T. (1967) The GenusPinus. Ronald Press, New York.

    Google Scholar 

  • Mitton, J.B., Linhart, Y.B., Davis, M.L. and Sturgeon, K.B. (1981) Estimation of outcrossing in ponderosa pine,Pinus ponderosa Laws. from patterns of segregation of protein polymorphisms and from frequencies of albino seedlings.Silvae Genetica 30, 117–21.

    Google Scholar 

  • Moran, G.F. and Bell, J.C. (1983)Eucalyptus. InIsozymes in Plant Genetics and Breeding, Part B (D.S. Tanksley and T.J. Orton, eds.) pp. 423–41. Elsevier, Amsterdam.

    Google Scholar 

  • Moran, G.F., Bell, J.C. and Matheson, A.C. (1980) The genetic structure and levels of inbreeding in aPinus radiata D. Don seed orchard.Silvae Genetica 29, 190–93.

    Google Scholar 

  • Moran, G.F. and Hopper, S.D. (1983) Genetic diversity and the insular population structure of the rare granite rock species,Eucalyptus caesia Benth.Australian Journal of Botany 31, 161–72.

    Google Scholar 

  • Nei, M., Maruyama, T. and Chakraborty, R. (1975) The bottleneck effect and genetic variability in populations.Evolution 29, 1–10.

    Google Scholar 

  • O'Malley, D.M., Allendorf, F.W. and Blake, G.M. (1979) Inheritance of isozyme variation and heterozygosity inPinus ponderosa.Biochemical Genetics 17, 233–50.

    PubMed  Google Scholar 

  • Phillips, M.A. and Brown, A.H.D. (1977) Mating system and hybridity inEucalyptus pauciflora.Australian Journal of Biological Sciences 30, 337–44.

    Google Scholar 

  • Primack, R.B. (1980) Phenotypic variation of rare and widespread species ofPlantago.Rhodora 82, 87–95.

    Google Scholar 

  • Rabinowitz, D. (1981) Seven forms of rarity. InThe Biological Aspects of Rare Plant Conservation (H. Synge, ed.) pp. 205–17. John Wiley, Chichester.

    Google Scholar 

  • Ritland, K. and Jain, S. (1981) A model for the estimation of outcrossing rate and gene frequencies usingn independent loci.Heredity 47, 35–52.

    Google Scholar 

  • Schemske, D.W. and Lande, R. (1985) The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations.Evolution 39, 41–52.

    Google Scholar 

  • Schwartz, O.A. (1985) Lack of protein polymorphism in the endemic relictChrysoplenium iowense (Saxifragaceae).Canadian Journal of Botany 63, 2031–4.

    Google Scholar 

  • Shaffer, M.L. (1981) Minimum population sizes for species conservation.BioScience 31, 131–4.

    Google Scholar 

  • Simon, C. and Archie, J. (1985) An empirical demonstration of the lability of heterozygosity estimates.Evolution 39, 463–7.

    Google Scholar 

  • Simpson, G. C. (1944)Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. (1981)Biometry: The Principles and Practice of Statistics in Biological Research, 2nd ed. Freeman, San Francisco.

    Google Scholar 

  • Soulé, M.E. (1980) Thresholds for survival: maintaining fitness and evolutionary potential. InConservation Biology: An Evolutionary-Ecological Approach (M.E. Soulé and B.A. Wilcox, eds.) pp. 151–69. Sinauer Associates, Sunderland, Massachussetts.

    Google Scholar 

  • Stebbins, G.L. (1974)Flowering Plants: Evolution Above the Species Level. Belknap, Cambridge, Massachussetts.

    Google Scholar 

  • Stebbins, G.L. (1979) Rare species as examples of plant evolution.Great Basin Naturalist Memoirs 3, 113–18.

    Google Scholar 

  • Stebbins, G.L. (1980) Rarity of plant species: a synthetic viewpoint.Rhodora 82, 77–86.

    Google Scholar 

  • Stebbins, G.L. and Major, J. (1965) Endemism and speciation in the California flora.Ecological Monographs 35, 1–35.

    Google Scholar 

  • Stern, K. and Roche, L. (1974)Genetics of Forest Ecosystems. Springer-Verlag, Berlin.

    Google Scholar 

  • Sytsma, K.J. and Schaal, B.A. (1985) Genetic variation, differentiation, and evolution in a species complex of tropical shrubs based on isozymic data.Evolution 39, 582–93.

    Google Scholar 

  • Van Valen, L. (1965) Morphological variation and width of ecological niche.American Naturalist 99, 377–90.

    Google Scholar 

  • Warwick, S.I. and Gottlieb, L.D. (1985) Genetic divergence and geographic speciation inLayia (Compositae).Evolution 39, 1236–41.

    Google Scholar 

  • Wright, S. (1931) Evolution in Mendelian populations.Genetics 16, 97–159.

    Google Scholar 

  • Wyatt, R. (1984) The evolution of self-pollination in granite outcrop species ofArenaria (Caryophyllaceae). I. Morphological correlates.Evolution 38, 804–16.

    Google Scholar 

  • Yeh, F.C. and Layton, C. (1979) The organization of genetic variability in central and marginal populations of lodgepole pinePinus contorta ssp.latifolia.Canadian Journal of Genetics and Cytology 21, 487–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karron, J.D. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evol Ecol 1, 47–58 (1987). https://doi.org/10.1007/BF02067268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067268

Keywords

Navigation