Skip to main content

Advertisement

Log in

Pathogenesis of edema formation in burn injuries

  • World Progress In Surgery
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

One of the obvious acute features of cutaneous thermal injury is the swelling of the involved tissue. This swelling is caused by a fluid shift from circulating plasma. Along with the evolution of intravenous fluid therapy in trauma and surgery, the implementation of such therapy to burn victims has improved survival. Edema generation aggravated by fluid therapy may, however, represent a source of increased morbidity. This paper presents a review of the literature on postburn edema generation, focusing mainly on fluid physiology. It is well documented that fluid is lost from the circulation into burned tissue because of a moderate increase in capillary permeability to fluid and macromolecules and a modest increase in hydrostatic pressure inside the perfusing microvessels. Recently it was discovered that a very negative interstitial pressure develops in thermally injured skin. This pressure constitutes a strong “suction” adding markedly to the edema generating effect of increased capillary permeability and pressure.

Résumé

Un des problèmes majeurs dés brûlures cutanées est l'oedème tissulaire. Cet oedème est dû à un déplacement des liquides à partir du plasma circulant. L'utilisation des techniques de remplissage intraveineux, courante dans les traumatismes et au cours de la chirurgie, a contribué à améliorer le pronostic des brûlures graves. La majoration des oedèmes par cette thérapeutique peut entrainer une morbidité supplémentaire. Dans cet article, est présentée une revue de la littérature sur la génèse des oedèmes post-brûlures, insistant surtout sur les aspects physiologiques des déplacements liquidiens. La fuite de liquides de la circulation générale vers les tissus brûlés est bien connue. Elle est secondaire à une perméabilitè capillaire accure pour les liquides et les macromolécules ainsi qu'à une augmentation de la pression hydrostatique à l'intérieur des microvaisseaux de la peau. Récemment, il a été mis en évidence une chute importante de la pression interstitielle dans la peau brûlée. Cette chute de pression crée un effet “pompe” qui majore l'oedème déjà favorisé par les facteurs précités.

Resumen

Una de las características obvias de las lesiones térmicas cutáneas agudas es el edema del tejido afectado. El edema es causado por migración de líquido a partir del plasma circulante, Coincidente con la evolución y avances de la terapia con líquidos intravenosos en el trauma y la cirugía, se ha implementado tal modalidad terapéutica en víctimas de quemaduras con mejoría de la tasa de sobrevida. La formación del edema, agravado por la terapia con líquidos parenterales, puede significar una fuente de mayor morbilidad.

El presente artículo es una revisión de la literatura sobre formación del edema de las quemaduras, enfocado principalmente desde el aspecto de la fisiología de los líquidos. Está bien documentado el que los líquidos escapan de la circulación hacia los tejidos quemados debido a moderado aumento de la permeabilidad capilar para los líquidos y macromoléculas y de un modesto incremento de la presión hidrostática en la microvasculatura. Recientemente se ha descubierto que se desarrolla presión intersticial muy negativa en la piel que ha sufrido lesión térmica. Esta presión constituye una especie de mecanismo de “succión”, el cual contribuye en forma notoria al efector generador de edema por las aumentadas permeabilidad capilar y presión hidrostática.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Remensnyder, T.P.: Topography of tissue oxygen changes in acute burn edema. Arch. Surg.105:477, 1972

    PubMed  Google Scholar 

  2. Wiig, H., Reed, R.K.: Compliance of the interstitial space in rats. II. Studies on skin. Acta Physiol. Scand.113:307, 1981

    PubMed  Google Scholar 

  3. Arturson, G.: Pathophysiological aspects of the burn syndrome. Acta Chir. Scand. (Suppl.)274:1, 1961

    PubMed  Google Scholar 

  4. Arturson, G., Mellander, S.: Acute changes in capillary filtration and diffusion in experimental burn injury. Acta Physiol. Scand.62:457, 1964

    PubMed  Google Scholar 

  5. Arturson, G., Soeda, S.: Changes in transcapillary leakage during healing of experimental burns. Acta Chir. Scand.133:609, 1967

    PubMed  Google Scholar 

  6. Arturson, G., Jakobsson, O.P.: Oedema measurements in a standard burn model. Burns12:1, 1985

    Google Scholar 

  7. Fox, C.L., Lasker, S.E.: Fluid and electrolyte alterations in burned monkeys. Ann. N.Y. Acad. Sci.150:611, 1968

    PubMed  Google Scholar 

  8. Leape, L.L.: Early burn wound changes. J. Pediatr. Surg.3:292, 1968

    PubMed  Google Scholar 

  9. Leape, L.L.: Initial changes in burns: Tissue changes in burned and unburned skin of Rhesus monkeys. J. Trauma10:488, 1970

    PubMed  Google Scholar 

  10. Demling, R.H., Mazess, R.B., Witt, R.M., Wolberg, W.H.: The study of burn wound edema using dicromatic absorptiometry. J. Trauma18:124, 1978

    PubMed  Google Scholar 

  11. Carvajal, H.F., Brouhard, B.H., Linares, H.A.: Effect of antihistamin-antiseretonin and ganglionic blocking agents upon increased capillary permeability following burn trauma. J. Trauma15:969, 1975

    PubMed  Google Scholar 

  12. Carvajal, H.F., Linares, H.A., Brouhard, B.H.: Relationship of burn size to vascular permeability changes in rats. Surg. Gynecol. Obstet.149:193, 1979

    PubMed  Google Scholar 

  13. Carvajal, H.F., Linares, H.A.: Effect of burn depth upon oedema formation and albumin extravasation in rats. Burns7:79, 1980

    Google Scholar 

  14. Brouhard, B.H., Carvajal, H.F., Linares, H.A.: Burn edema and protein leakage in the rat. I. Relationship to time of injury. Microvasc. Res.15:221, 1978

    PubMed  Google Scholar 

  15. Brown, W.L., Bowler, E.G., Mason, A.D. Jr., Pruitt, B.A. Jr.: Protein metabolism in burned rats. Am. J. Physiol.231:476, 1976

    PubMed  Google Scholar 

  16. Brown, W.L., Bowler, E.G., Mason, A.D. Jr.: The studies of metabolism and nutritional effects in burn injury in soldiers: Studies of disturbance of protein turnover in burned troops: Use of an animal model. U.S. Army Institute of Surgical Research, Fort Sam Houston, Annual Report 1981, pp. 233–259

    Google Scholar 

  17. Sokawa, M., Monafo, W., Deitz, F., Flynn, D.: The relationship between experimental fluid therapy and wound edema in scald wounds. Ann. Surg.193:237, 1981

    PubMed  Google Scholar 

  18. Lund, T., Reed, R.K.: Microvascular fluid exchange following thermal skin injury in the rat: Changes in extravascular colloid osmotic pressure, albumin mass, and water content. Circ. Shock20:91, (1986)

    PubMed  Google Scholar 

  19. Onarheim, H., Lund, T., Reed, R.K.: Thermal skin injury: II. Effects on edema formation and albumin extravasation of fluid resuscitation with lactated Ringer's, plasma, and hypertonic saline (2,400 mosmol/l). Circ. Shock27:25, 1989

    PubMed  Google Scholar 

  20. Cope, O., Moore, F.D.: The redistribution of body water and the fluid therapy of the burned patient. Ann. Surg.126:1010, 1947

    Google Scholar 

  21. Evans, E.I., Purnell, O.J., Robinett, P.W., Batchelor, A., Martin, M.: Fluid and electrolyte requirements in severe burns. Ann. Surg.135:804, 1952

    PubMed  Google Scholar 

  22. Dobson, E.L., Warner, G.F.: Factors concerned in the early stages of thermal shock. Circ. Res.5:69, 1957

    PubMed  Google Scholar 

  23. Ferguson, J.L., Hikawyj-Yevich, I., Miller, H.I.: Body fluid compartment changes during burn shock in the guinea pig. Circ. Shock7:457, 1980

    PubMed  Google Scholar 

  24. Zetterström, H., Arturson, G.: Plasma oncotic pressure and plasma protein concentration in patients following burn injury. Acta Anaesthesiol. Scand.24:288, 1980

    PubMed  Google Scholar 

  25. Farrow, S.P., Lawrence, J.C.: Thermal injury and the sodium, potassium and water exchange of skin. Br. J. Exp. Pathol.58:327, 1977

    PubMed  Google Scholar 

  26. Arturson, G.: Microvascular permeability to macromolecules in thermal injury. Acta Physiol. Scand. (Suppl.)463:111, 1979

    Google Scholar 

  27. Harms, B.A., Bodai, B.I., Kramer, G.C., Demling, R.H.: Microvascular fluid and protein flux in pulmonary and systemic circulations after thermal injury. Microvasc. Res.23:77, 1982

    PubMed  Google Scholar 

  28. Demling, R.H., Kramer, G.C., Harms, B.A.: Role of thermal injury induced hypoproteinemia on fluid flux and protein permeability in burned and non-burned tissue. Surgery95:136, 1984

    PubMed  Google Scholar 

  29. Ferguson, J.L., Merrill, G.F., Miller, H.I., Spitzer, J.J.: Regional blood flow redistribution during early burn shock in the guinea pig. Circ. Shock4:317, 1977

    PubMed  Google Scholar 

  30. Jelenko, C., Jennings, W.D., O'Kelley, W.R., Byrd, H.C.: Threshold burning effects on distant microcirculation. Arch. Surg.106:317, 1973

    PubMed  Google Scholar 

  31. Kiviluoto, T., Grönbech, J.-E., Kivilaakso, E., Lund, T., Pitkänen, J., Svanes, K.: Acute gastric mucosal lesions and hemodynamic and microcirculatory changes in the thermally injured rat. Burns15:365, 1989

    PubMed  Google Scholar 

  32. Leape, L.L.: Kinetics of burn edema formation in primates. Ann. Surg.176:223, 1972

    PubMed  Google Scholar 

  33. Wachtel, T.L., Frank, H.A., Sanders, R., Hargens, A.R., Peters, R.M.: Definition of the Starling forces with wick catheter in burned patients. J. Burn Care Rehabil.4:331, 1983

    Google Scholar 

  34. Zawacki, B.E.: The natural history of reversible burn injury. Surg. Gynecol. Obstet.139:867, 1974

    PubMed  Google Scholar 

  35. Cotran, R.S.: The delayed and prolonged vascular leakage in inflammation. II. An electron microscopic study of the vascular response after thermal injury. Am. J. Pathol.46:589, 1965

    PubMed  Google Scholar 

  36. Pitkänen, J., Lund, T., Aanderud, L., Reed, R.K.: Transcapillary colloid osmotic pressures in injured and non-injured skin of seriously burned patients. Burns13:198, 1987

    Google Scholar 

  37. Lund, T., Bert, J.L., Onarheim, H., Bowen, B.D., Reed, R.K.: Microvascular exchange during burn injury. I: A review. Circ. Shock28:179, 1989

    PubMed  Google Scholar 

  38. Pitt, R.M., Parker, J.C., Jurkovich, G.J., Taylor, A.E., Curreri, P.W.: Analysis of altered capillary pressure and permeability after thermal injury. J. Surg. Res.42:693, 1987

    PubMed  Google Scholar 

  39. Demling, R.H.: Fluid replacement in burned patients. Surg. Clin. North Am.67:15, 1987

    PubMed  Google Scholar 

  40. Aukland, K., Nicolaysen, G.: Interstitial fluid volume: Local regulatory mechanisms. Physiol. Rev.61:556, 1981

    PubMed  Google Scholar 

  41. Lund, T., Wiig, H., Reed, R.K.: Acute postburn edema: Role of strongly negative interstitial fluid pressure. Am. J. Physiol.255 (Heart Circ. Physiol. 24):H1069, 1988

  42. Onarheim, H., Reed, R.K.: Thermal skin injury: Effect of fluid therapy on the transcapillary colloid osmotic gradient. J. Surg. Res.50:272, 1991

    PubMed  Google Scholar 

  43. Lund, T., Onarheim, H., Wiig, H., Reed, R.K.: Mechanisms behind the increased dermal imbibition pressure in acute burn edema. Am. J. Physiol.256 (Heart Circ. Physiol. 25):H1940, 1989

  44. Demling, R.H.: Burns. In Edema, N.C. Staub, A.E. Taylor, editors, New York, Raven Press, 1984, pp. 579–599

    Google Scholar 

  45. Pruitt, B.A. Jr., Mason, A.D. Jr., Moncrief, J.A.: Hemodynamic changes in the early postburn patient: The influence of fluid administration and of a vasodilator (hydralazine). J. Trauma11:36, 1971

    PubMed  Google Scholar 

  46. Lund, T., Reed, R.K.: Acute hemodynamic effects of thermal skin injury in the rat. Circ. Shock20:105, 1986

    PubMed  Google Scholar 

  47. Onarheim, H., Lund, T., Reed, R.K.: Thermal skin injury: I. Acute hemodynamic effects of fluid resuscitation with lactated Ringer's, plasma, and hypertonic saline (2,400 mosmol/l) in the rat. Circ. Shock27:13, 1989

    PubMed  Google Scholar 

  48. Cioffi, W.G., DeMeules, J.E., Gamelli, R.L.: The effect of burn injury and fluid resuscitation on cardiac function in vitro. J. Trauma26:638, 1986

    PubMed  Google Scholar 

  49. Moore, D.B., Rainey, W.C., Caldwell, F.T. Jr., Bowser-Wallace, B.H., Graves, D.B., Shewmake, K.B., Hough, A.J.: The effect of rapid resuscitation upon cardiac index following thermal trauma in a porcine model. J. Trauma27:141, 1987

    PubMed  Google Scholar 

  50. Demling, R.H., Niehaus, G., Perea, A., Will, J.A.: Effect of burn-induced hypoproteinemia on pulmonary transvascular fluid filtration rate. Surgery85:339, 1979

    PubMed  Google Scholar 

  51. Demling, R.H., Wong, C., Jin, L., Hechtman, H., LaLonde, C., West, K.: Early lung dysfunction after major burns: Role of edema and vasoactive mediators. J. Trauma25:959, 1985

    PubMed  Google Scholar 

  52. Taylor, A.E., Granger, D.N.: Exchange of macromolecules across the microcirculation. In Handbook of Physiology: The cardiovascular system. Vol. IV: Microcirculation Part 1, E.M. Renkin, C.C. Michel, editors, Bethesda, The American Physiological Society, 1984, pp. 467–520

    Google Scholar 

  53. Demling, R.H., Will, J.A., Belzer, F.O.: Effect of major thermal injury on the pulmonary microcirculation. Surgery83:746, 1978

    PubMed  Google Scholar 

  54. Kramer, G.C., Gunther, R.A., Nerlich, M.L., Zweifach, S.S., Demling, R.H.: Effect of dextran-70 on increased microvascular fluid and protein flux after thermal injury. Circ. Shock9:529, 1982

    PubMed  Google Scholar 

  55. Brouhard, B.H., Carvajal, H.F., Miller, T.H.: Effect of nicotinic acid on vascular permeability after thermal trauma in the rat. J. Trauma18:774, 1978

    PubMed  Google Scholar 

  56. LaLonde, C., Demling, R.H., Knox, J., Youn, Y.K., Zhu, D.: Deferoxamine conjugated to hespan, as a resuscitation fluid, attenuates the systemic response to burn injury. Physiologist33:A93, 1990

  57. Schmalzel, J.L., Chu, C.-S., McManus, A.T.: Constant-current and constant-voltage stimulators for wound healing studies. In Proceedings of the Eighth Annual Conference of the IEEE/Engineering in Medicine and Biology Society, Fort Worth, Texas, 1986, pp. 1482–1484

  58. Chu, C.-S., McManus, A.T., Mason, A.D., Jr., Okerberg, C.V., Pruitt, B.A., Jr.: Multiple graft harvestings from deep partial-thickness scald wounds healed under the influence of weak direct current. J. Trauma30:1044, 1990

    PubMed  Google Scholar 

  59. Wilmore, D.W., Aulick, L.H., Mason, A.D., Jr., Pruitt, B.A., Jr.: The influences of the burn wound on local and systemic response to injury. Ann. Surg.186:444, 1977

    PubMed  Google Scholar 

  60. Crum, R.L., Dominic, W., Hansbrough, J.F., Shackford, S.R., Brown, M.R.: Cardiovascular and neurohumoral responses following burn injury. Arch. Surg.125:1065, 1990

    PubMed  Google Scholar 

  61. Neurohumoral responses to thermal injury: Editorial. Lancet2:1221, 1990

    Google Scholar 

  62. LaCelle, P.T., Blumenstock, F.A., Saba, T.M.: Interaction of plasma fibronectin and circulating collagenous tissue debris after burn. FASEB J.4:A849, 1990

  63. Onarheim, H., Missavage, A.E., Gunther, R.A., Kramer, G.C., Reed, R.K., Laurent, T.C.: Marked increase of plasma hyaluronan concentration after major thermal injury and infusion therapy. J. Surg. Res.50:259, 1991

    PubMed  Google Scholar 

  64. Ferrara, J.J., Reed, R.K., Dyess, D.L., Townsley, M.I., Onarheim, H., Laurent, T.C., Taylor, A.E.: Increased hyaluronan flux from skin following burn injury. J. Surg. Res.50:240, 1991

    PubMed  Google Scholar 

  65. Reed, R.K., Laurent, T.C., Taylor, A.E.: Hyaluronan in prenodal lymph from skin: Changes with lymph flow. Am. J. Physiol.259 (Heart Circ. Physiol. 28):H1097, 1990

  66. Paty, P.B., Graeff, R.W., Waldman, F.M., Hunt, T.K., Mathes, S.J.: Biologic priming of neutrophils in subcutaneous wounds. Arch. Surg.123:1509, 1988

    PubMed  Google Scholar 

  67. Deitch, E.A., Lu, Q., Xu, D.-Z., Specian, R.D.: Effect of local and systemic burn microenvironment on neutrophil activation as assessed by complement receptor expression and morphology. J. Trauma30:259, 1990

    PubMed  Google Scholar 

  68. Vindenes, H., Bjerknes, R.: Phagocyte dysfunctions following burn injury. Anal. Cell. Path.1:305, 1989

    Google Scholar 

  69. Pruitt, B.A. Jr.: Advances in fluid therapy and the early care of the burn patient. World J. Surg.2:139, 1978

    PubMed  Google Scholar 

  70. Arturson, G., Groth, T., Hedlund, A., Zaar, B.: Potential use of computer simulation in treatment of burns with special regard to oedema formation. Scand. J. Plast. Reconstr. Surg.18:39, 1984

    PubMed  Google Scholar 

  71. Bush, J.W., Schneider, A.M., Wachtel, T.L., Brimm, J.E.: A simulation analysis of plasma water dynamics and treatment in acute burn resuscitation. J. Burn Care Rehabil.7:86, 1986

    PubMed  Google Scholar 

  72. Bert, J.L., Bowen, B.D., Gu, X., Lund, T., Reed, R.K.: Microvascular exchange during burn injury: II. Formulation and validation of a mathematical model. Circ. Shock28:199, 1989

    PubMed  Google Scholar 

  73. Bowen, B.D., Bert, J.L., Gu, X., Lund, T., Reed, R.K.: Microvascular exchange during burn injury: III. Implications of the model. Circ. Shock28:221, 1989

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lund, T., Onarheim, H. & Reed, R.K. Pathogenesis of edema formation in burn injuries. World J. Surg. 16, 2–9 (1992). https://doi.org/10.1007/BF02067107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067107

Keywords

Navigation