Skip to main content

Pathophysiology of Burn Injury

  • Chapter
  • First Online:
Burn Care and Treatment
  • 1203 Accesses

Abstract

The pathophysiology of burns is similar in several aspects to the hypermetabolic response, complex, and formidable. Pathophysiology involves not only the alterations in the skin with the thermal injury, but it involves all organs, and ultimately is connected also to the hypermetabolic response. This chapter delineates the pathophysiologic changes on an organ basis, and tissue basis, and to a certain extent systemic as well as immune responses. This will give the reader a better understanding on the changes that occur after a burn, how to treat and alleviate this response, and lastly how to improve the outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeschke MG, Chinkes DL, Finnerty CC et al (2008) Pathophysiologic response to severe burn injury. Ann Surg 248:387–401

    Article  PubMed  PubMed Central  Google Scholar 

  2. Herndon DN (2007) Total burn care, 3rd edn. Saunders Elsevier, Philadelphia, PA

    Google Scholar 

  3. Jeschke MG, Kamolz L, Sjoeberg F, Wolf SE (2012) Handbook of burns, vol 1. Springer, Wien, New York

    Book  Google Scholar 

  4. Berger MM (2005) Can oxidative damage be treated nutritionally? Clin Nutr 24:172–183

    Article  CAS  PubMed  Google Scholar 

  5. Berger MM (2006) Antioxidant micronutrients in major trauma and burns: evidence and practice. Nutr Clin Pract 21:438–449

    Article  PubMed  Google Scholar 

  6. Jeschke MG, Rose C, Angele P, Fuchtmeier B, Nerlich MN, Bolder U (2004) Development of new reconstructive techniques: use of Integra in combination with fibrin glue and negative-pressure therapy for reconstruction of acute and chronic wounds. Plast Reconstr Surg 113:525–530

    Article  PubMed  Google Scholar 

  7. Demling RH, DeSanti L (2001) The rate of restoration of body weight after burn injury, using the anabolic agent oxandrolone, is not age dependent. Burns 27:46–51

    Article  CAS  PubMed  Google Scholar 

  8. Demling RH, Seigne P (2000) Metabolic management of patients with severe burns. World J Surg 24:673–680

    Article  CAS  PubMed  Google Scholar 

  9. Branski LK, Herndon DN, Byrd JF et al (2011) Transpulmonary thermodilution for hemodynamic measurements in severely burned children. Crit Care 15:R118

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kraft R, Herndon DN, Branski LK, Finnerty CC, Leonard KR, Jeschke MG (2012) Optimized fluid management improves outcomes of pediatric burn patients. J Surg Res 181(1):121–8. https://doi.org/10.1016/j.jss.2012.05.058

  11. Williams FN, Herndon DN, Suman OE et al (2011) Changes in cardiac physiology after severe burn injury. J Burn Care Res 32:269–274

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wilmore DW, Long JM, Mason AD Jr, Skreen RW, Pruitt BA Jr (1974) Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 180:653–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arturson G (1961) Pathophysiological aspects of the burn syndrome with special reference to liver injury and alterations of capillary permeability. Acta Chir Scand Suppl 274(Suppl):1–135

    PubMed  Google Scholar 

  14. Demling RH, Mazess RB, Witt RM, Wolberg WH (1978) The study of burn wound edema using dichromatic absorptiometry. J Trauma 18:124–128

    Article  CAS  PubMed  Google Scholar 

  15. Demling RH, Will JA, Belzer FO (1978) Effect of major thermal injury on the pulmonary microcirculation. Surgery 83:746–751

    CAS  PubMed  Google Scholar 

  16. Leape LL (1970) Initial changes in burns: tissue changes in burned and unburned skin of rhesus monkeys. J Trauma 10:488–492

    Article  CAS  PubMed  Google Scholar 

  17. Wilmore DW (1976) Hormonal responses and their effect on metabolism. Surg Clin North Am 56:999–1018

    Article  CAS  PubMed  Google Scholar 

  18. Cuthbertson DP, Angeles Valero Zanuy MA, Leon Sanz ML (2001) Post-shock metabolic response. 1942. Nutr Hosp 16:176–182. discussion 5-6

    CAS  PubMed  Google Scholar 

  19. Baron PW, Barrow RE, Pierre EJ, Herndon DN (1997) Prolonged use of propranolol safely decreases cardiac work in burned children. J Burn Care Rehabil 18:223–227

    Article  CAS  PubMed  Google Scholar 

  20. Herndon DN, Tompkins RG (2004) Support of the metabolic response to burn injury. Lancet 363:1895–1902

    Article  CAS  PubMed  Google Scholar 

  21. Minifee PK, Barrow RE, Abston S, Desai M, Herndon DN (1989) Improved myocardial oxygen utilization following propranolol infusion in adolescents with postburn hypermetabolism. J Pediatr Surg 24:806–810; discussion 10-1

    Article  CAS  PubMed  Google Scholar 

  22. Horton JW (2004) Left ventricular contractile dysfunction as a complication of thermal injury. Shock 22:495–507

    Article  PubMed  Google Scholar 

  23. Horton JW, White DJ, Maass D, Sanders B, Thompson M, Giroir B (1999) Calcium antagonists improve cardiac mechanical performance after thermal trauma. J Surg Res 87:39–50

    Article  CAS  PubMed  Google Scholar 

  24. Jeschke MG, Mlcak RP, Finnerty CC et al (2007) Burn size determines the inflammatory and hypermetabolic response. Crit Care 11:R90

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hart DW, Wolf SE, Mlcak R et al (2000) Persistence of muscle catabolism after severe burn. Surgery 128:312–319

    Article  CAS  PubMed  Google Scholar 

  26. Mlcak RP, Jeschke MG, Barrow RE, Herndon DN (2006) The influence of age and gender on resting energy expenditure in severely burned children. Ann Surg 244:121–130

    Article  PubMed  PubMed Central  Google Scholar 

  27. Przkora R, Barrow RE, Jeschke MG et al (2006) Body composition changes with time in pediatric burn patients. J Trauma 60:968–971; discussion 71

    Article  PubMed  Google Scholar 

  28. Przkora R, Herndon DN, Suman OE (2007) The effects of oxandrolone and exercise on muscle mass and function in children with severe burns. Pediatrics 119:e109–e116

    Article  PubMed  Google Scholar 

  29. Dolecek R (1989) Endocrine changes after burn trauma: a review. Keio J Med 38:262–276

    Article  CAS  PubMed  Google Scholar 

  30. Jeffries MK, Vance ML (1992) Growth hormone and cortisol secretion in patients with burn injury. J Burn Care Rehabil 13:391–395

    Article  CAS  PubMed  Google Scholar 

  31. Klein GL, Bi LX, Sherrard DJ et al (2004) Evidence supporting a role of glucocorticoids in short-term bone loss in burned children. Osteoporos Int 15:468–474

    Article  CAS  PubMed  Google Scholar 

  32. Goodall M, Stone C, Haynes BW Jr (1957) Urinary output of adrenaline and noradrenaline in severe thermal burns. Ann Surg 145:479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coombes EJ, Batstone GF (1982) Urine cortisol levels after burn injury. Burns Incl Therm Inj 8:333–337

    Article  CAS  PubMed  Google Scholar 

  34. Norbury WB, Herndon DN (2007) Modulation of the hypermetabolic response after burn injury. In: Herndon DN (ed) Total burn care, 3rd edn. Saunders Elsevier, New York, pp 420–433

    Chapter  Google Scholar 

  35. Sheridan RL (2001) A great constitutional disturbance. N Engl J Med 345:1271–1272

    Article  CAS  PubMed  Google Scholar 

  36. Pereira C, Murphy K, Jeschke M, Herndon DN (2005) Post burn muscle wasting and the effects of treatments. Int J Biochem Cell Biol 37:1948–1961

    Article  CAS  PubMed  Google Scholar 

  37. Wolfe RR (1981) Review: acute versus chronic response to burn injury. Circ Shock 8:105–115

    CAS  PubMed  Google Scholar 

  38. Galster AD, Bier DM, Cryer PE, Monafo WW (1984) Plasma palmitate turnover in subjects with thermal injury. J Trauma 24:938–945

    Article  CAS  PubMed  Google Scholar 

  39. Cree MG, Zwetsloot JJ, Herndon DN et al (2007) Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate. Ann Surg 245:214–221

    Article  PubMed  PubMed Central  Google Scholar 

  40. Childs C, Heath DF, Little RA, Brotherston M (1990) Glucose metabolism in children during the first day after burn injury. Arch Emerg Med 7:135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cree MG, Aarsland A, Herndon DN, Wolfe RR (2007) Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance. Crit Care Med 35:S476–S483

    Article  CAS  PubMed  Google Scholar 

  42. Gauglitz GG, Herndon DN, Kulp GA, Meyer WJ 3rd, Jeschke MG (2009) Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metab 94:1656–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hart DW, Wolf SE, Herndon DN et al (2002) Energy expenditure and caloric balance after burn: increased feeding leads to fat rather than lean mass accretion. Ann Surg 235:152–161

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jeschke MG, Gauglitz GG, Kulp GA et al (2011) Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One 6:e21245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hart DW, Wolf SE, Chinkes DL et al (2000) Determinants of skeletal muscle catabolism after severe burn. Ann Surg 232:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR (2001) Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345:1223–1229

    Article  CAS  PubMed  Google Scholar 

  47. Chang DW, DeSanti L, Demling RH (1998) Anticatabolic and anabolic strategies in critical illness: a review of current treatment modalities. Shock 10:155–160

    Article  CAS  PubMed  Google Scholar 

  48. Newsome TW, Mason ADJ, Pruitt BAJ (1973) Weight loss following thermal injury. Ann Surg 178:215–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jahoor F, Desai M, Herndon DN, Wolfe RR (1988) Dynamics of the protein metabolic response to burn injury. Metabolism 37:330–337

    Article  CAS  PubMed  Google Scholar 

  50. Wolfe RR, Shaw JH, Durkot MJ (1983) Energy metabolism in trauma and sepsis: the role of fat. Prog Clin Biol Res 111:89–109

    CAS  PubMed  Google Scholar 

  51. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317:403–408

    Article  CAS  PubMed  Google Scholar 

  52. Yu YM, Tompkins RG, Ryan CM, Young VR (1999) The metabolic basis of the increase of the increase in energy expenditure in severely burned patients. JPEN 23:160–168

    Article  CAS  Google Scholar 

  53. Gauglitz GG, Herndon DN, Jeschke MG (2008) Insulin resistance postburn: underlying mechanisms and current therapeutic strategies. J Burn Care Res 29:683–694

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gauglitz GG, Halder S, Boehning DF et al (2010) Post-burn hepatic insulin resistance is associated with endoplasmic reticulum (ER) stress. Shock 33(3):299–305. https://doi.org/10.1097/SHK.0b013e3181b2f439

  55. Khani S, Tayek JA (2001) Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin Sci (Lond) 101:739–747

    Article  CAS  Google Scholar 

  56. Gore DC, Jahoor F, Wolfe RR, Herndon DN (1993) Acute response of human muscle protein to catabolic hormones. Ann Surg 218:679–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robinson LE, van Soeren MH (2004) Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Clin Issues 15:45–62

    Article  PubMed  Google Scholar 

  58. Gearhart MM, Parbhoo SK (2006) Hyperglycemia in the critically ill patient. AACN Clin Issues 17:50–55

    Article  PubMed  Google Scholar 

  59. Carlson GL (2001) Insulin resistance and glucose-induced thermogenesis in critical illness. Proc Nutr Soc 60:381–388

    Article  CAS  PubMed  Google Scholar 

  60. Wolfe RR, Durkot MJ, Allsop JR, Burke JF (1979) Glucose metabolism in severely burned patients. Metabolism 28:1031–1039

    Article  CAS  PubMed  Google Scholar 

  61. Cree MG, Wolfe RR (2008) Postburn trauma insulin resistance and fat metabolism. Am J Physiol Endocrinol Metab 294:E1-9

    Article  PubMed  CAS  Google Scholar 

  62. Hunt DG, Ivy JL (2002) Epinephrine inhibits insulin-stimulated muscle glucose transport. J Appl Physiol 93:1638–1643

    Article  CAS  PubMed  Google Scholar 

  63. Chrysopoulo MT, Jeschke MG, Dziewulski P, Barrow RE, Herndon DN (1999) Acute renal dysfunction in severely burned adults. J Trauma 46:141–144

    Article  CAS  PubMed  Google Scholar 

  64. Jeschke MG, Barrow RE, Wolf SE, Herndon DN (1998) Mortality in burned children with acute renal failure. Arch Surg 133:752–756

    Article  CAS  PubMed  Google Scholar 

  65. Wolf SE, Rose JK, Desai MH, Mileski JP, Barrow RE, Herndon DN (1997) Mortality determinants in massive pediatric burns. An analysis of 103 children with > or = 80% TBSA burns (> or = 70% full-thickness). Ann Surg 225:554–565; discussion 65-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wolf SE, Ikeda H, Matin S et al (1999) Cutaneous burn increases apoptosis in the gut epithelium of mice. J Am Coll Surg 188:10–16

    Article  CAS  PubMed  Google Scholar 

  67. Deitch EA, Rutan R, Waymack JP (1996) Trauma, shock, and gut translocation. New Horiz 4:289–299

    CAS  PubMed  Google Scholar 

  68. Swank GM, Deitch EA (1996) Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg 20:411–417

    Article  CAS  PubMed  Google Scholar 

  69. Jeschke MG (2009) The hepatic response to thermal injury: is the liver important for postburn outcomes? Mol Med 15:337–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jeschke MG, Barrow RE, Herndon DN (2004) Extended hypermetabolic response of the liver in severely burned pediatric patients. Arch Surg 139:641–647

    Article  PubMed  Google Scholar 

  71. Jeschke MG, Micak RP, Finnerty CC et al (2007) Changes in liver function and size after a severe thermal injury. Shock 28(2):172–7. https://doi.org/10.1097/shk.0b013e318047b9e2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Jeschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeschke, M.G. (2021). Pathophysiology of Burn Injury. In: Jeschke, M.G., Kamolz, LP., Shahrokhi, S. (eds) Burn Care and Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-39193-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39193-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39192-8

  • Online ISBN: 978-3-030-39193-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics