Skip to main content
Log in

Sulfur metabolism in Thiorhodaceae. IV. Assimilatory reduction of sulfate byThiocapsa floridana andChromatium species

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Thiocapsa floridana strain 1711, andChromatium strains 1611 and 6412 can grow with molecular hydrogen replacing sulfide as the electron donor. Sulfate suffices as the sulfur source. The incorporation of radioactive sulfur from35S-sulfate was measured in growing cells in which molecular hydrogen or acetate was the electron donor. In cells pre-grown in sulfide, the incorporation of radioactivity began slowly after a lag period; in contrast, cells grown in sulfate took up the marker at a faster rate and without a lag. The radioactivity appeared in protein as cysteine and methionine. No elimination of sulfide was detected during growth. Thus, the reduction of sulfate was purely assimilatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandurski, R. S., Wilson, L. G. andSquires, C. L. 1956. The mechanism of “active sulfate” formation. J. Am. Chem. Soc.78: 6408–6409.

    Article  CAS  Google Scholar 

  • Dent, C. E. 1948, A study of the behavior of some sixty amino-acids and other ninhydrin-reacting substances on phenol-‘collidine’ filter-paper chromatograms, with notes as to the occurrence of some of them in biological fluids. Biochem. J.43: 169–180.

    CAS  Google Scholar 

  • Gregory, J. D. andRobbins, P. W. 1960. Metabolism of sulfur compounds (Sulfate metabolism). Ann. Rev. Biochem.29: 347–364.

    Article  PubMed  CAS  Google Scholar 

  • Hendley, D. D. 1955. Endogenous fermentation in Thiorhodaceae. J. Bacteriol.70: 625–634.

    PubMed  CAS  Google Scholar 

  • Hurlbert, R. E. andLascelles, J. 1963. Ribulose diphosphate carboxylase in Thiorhodaceae. J. Gen. Microbiol.33: 445–458.

    Article  PubMed  CAS  Google Scholar 

  • Lippert, K. D. 1967. Die Verwertung von molekularom Wasserstoff durchChlorobium thiosulfatophilum. Thesis, Göttingen.

  • Lougheed, G. J. andMilazzo, F. H. 1965. A study of some aspects of sulfur metabolism in the wood-rotting basidiomycete,Fomes geotropus. Can. J. Microbiol.11: 959–966.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien, p. 179–189 u. 503–504.In Anreicherungskultur und Mutantenauslese, Symposium in Göttingen, 1964. Zentr. Bakteriol. Parasitenk., I. Abt., Supplementheft 1, 1965.

  • Robbins, P. W. andLipmann, F. 1956. The enzymatic sequence in the biosynthesis of active sulfate. J. Am. Chem. Soc.78: 6409–6410.

    Article  CAS  Google Scholar 

  • Roelofsen, P. A. 1934. On the metabolism of the purple sulfur bacteria. Koninkl. Ned. Akad. Wetenschap. Proc.37: 660–669.

    Google Scholar 

  • Schlegel, H. G. undLafferty, R. M. 1961. Radioaktivitätsmessung an Einzellern auf Membranfiltern. Arch. Microbiol.38: 52–54.

    CAS  Google Scholar 

  • Schmidt, K., Liaaen Jensen, S. undSchlegel, H. G. 1963. Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid vonChromatium okenli Perty. Arch. Mikrobiol.46: 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, K., Pfennig, N. andLiaaen Jensen, S. 1965. Carotenoids of Thiorhodaceae. IV. The carotenoid composition of 25 pure isolates. Arch. Mikrobiol.52: 132–146.

    PubMed  CAS  Google Scholar 

  • Thiele, H. H. 1966. Wachstumsphysiologische Untersuchungen an Thiorhodaceae; Wasserstoff-Donatoren und Sulfatreduktion. Thesis, Göttingen.

  • Thiele, H. H. 1968a. Die Verwertung einfacher organischer Substrate durch Thiorhodaceae. Arch. Mikrobiol.60: 124–138.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, H. H. 1968b. Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism inThiocapsa floridana andChromatium species. Antonie van Leeuwenhock34: 350–356.

    Article  CAS  Google Scholar 

  • Trüper, H. G. 1964a. CO2-Fixierung und Intermediarstoffwechsel beiChromatium okenii Perty. Arch. Mikrobiol.49: 23–50.

    Article  Google Scholar 

  • Trüper, H. G. 1964b. Sulphur metabolism in Thiorhodaceae. II. Stoichiometric relationship of CO2 fixation to oxidation of hydrogen sulphide and intracellular sulphur inChromatium okenii. Antonie van Leeuwenhoek30: 385–394.

    Article  Google Scholar 

  • Trüper, H. G. andPfennig, N. 1966. Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur inThiocapsa floridana andChromatium species. Antonie van Leeuwenhoek32: 261–276.

    Article  PubMed  Google Scholar 

  • Trüper, H. G. andSchlegel, H. G. 1964. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells ofChromatium okenii. Antonie van Leeuwenhoek30: 225–238.

    Article  Google Scholar 

  • Wilson, L. G. 1962. Metabolism of sulfate: sulfate reduction. Ann. Rev. Plant Physiol.13: 201–224.

    Article  CAS  Google Scholar 

  • Wood, J. L. andMills, G. C. 1952. Preparation ofl-methionine-S23 andl-cysteine-S23 from radioactive yeast. J. Am. Chem. Soc.74: 2445.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiele, H.H. Sulfur metabolism in Thiorhodaceae. IV. Assimilatory reduction of sulfate byThiocapsa floridana andChromatium species. Antonie van Leeuwenhoek 34, 341–349 (1968). https://doi.org/10.1007/BF02046456

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02046456

Keywords

Navigation