Skip to main content
Log in

Radionuclide release from high-level nuclear-waste packages

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The engineered barrier subsystem (EBS) in an important component in limiting the release of radionuclides from a geologic repository for disposal of high-level nuclear waste. The purpose of this paper is to identify and discuss the key processes that affect the release of radionuclides from nuclear waste forms and migration of these radionuclides through the nuclear-waste packages of the EBS to the geologic setting (i.e., far-field). Previous studies of release have focused on laboratory testing and modelling of the waste-form dissolution (“leaching”). Mass-transfer analyses, using realistic chemical-reaction-rate boundary conditions, confirm that radionuclide release from the EBS will be controlled by solubilitylimited, mass transport, rather than by waste-form “leaching”. Based on these well-established and laboratory-validated models, key data necessary for reliable predictions of the long-term performance of an EBS are identified. These data include the local chemistry at the wasteform surface, radionuclide solubilities and sorption behavior in contact with engineered materials, and characteristics of radionuclide-bearing colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.S. Patera, D.E. Hobart, A. Meijer, R.S. Rundberg, J. Radioanal. Nucl. Chem. Articles, 142 (1990) 331.

    Google Scholar 

  2. L.H. Johnson, N.C. Garisto, S. Stroes-Gascoyne, Waste Management '85, 1 University of Arizona, Tucson, Az, 1985, p. 479.

    Google Scholar 

  3. L.H. Johnson, D.W. Shoesmith, S. Stroes-Gascoyne, Scientific Basis for Nuclear Waste Management XI, 112 Materials Research Society, Pittsburgh, Pa., 1987, p. 99.

    Google Scholar 

  4. V.M. Oversby, Scientific Basis for Nuclear Waste Management IX, 50, Materials Research Society, Pittsburgh, Pa, 1985, p. 337.

    Google Scholar 

  5. R.S. Forsyth, L.O. Werme, Scientific Basis for Nuclear Waste Management IX, 50, Materials Research Society, Pittsburgh, Pa., 1985, p. 327.

    Google Scholar 

  6. D.W. Shoesmith, S. Sunder, B.M. Ikeda, F. King, Scientific Basis for Nuclear Waste Management XII, 127, Materials Research Society, Pittsburg, Pa., 1988, p. 279.

    Google Scholar 

  7. M.J. Apted, Workshop on the Leaching Mechanisms of Nuclear Waste Forms, May 19–21, 1982, Summary Report, PNL-4382, Pacific Northwest Laboratory, Richland, Wa., 1982, p. 161.

    Google Scholar 

  8. B. Grambow, Scientific Basis for Nuclear Waste Management VIII, 44, Materials Research Society, Pittsburg, Pa., 1985, p. 15.

    Google Scholar 

  9. C.J. Bruton, Scientific Basis for Nuclear Waste Management XI, 112, Materials Research Society, Pittsburgh, Pa., 1987, p. 607.

    Google Scholar 

  10. C.J. Bruton, H.F. Shaw, Scientific Basis for Nuclear Waste Management XI, 112, Materials Research Society, Pittsburgh, Pa., 1987, p. 485.

    Google Scholar 

  11. I. Neretnieks, Transport of Oxidants and Radionuclides Through a Clay Barrier, KBS TR-79, Swedish Nuclear Fuel Supply Co., Stockholm, Sweden, 1978.

    Google Scholar 

  12. T.H. Pigford, P.L. Chambre, High-Level Nuclear Waste Disposal, Battelle Press, Columbus, Ohio, 1986, p. 163.

    Google Scholar 

  13. T.H. Pigford, P.L. Chambre, Scientific Basis for Nuclear Waste Management XI, 112, Materials Research Society, Pittsburgh, Pa., 1987, p. 125.

    Google Scholar 

  14. B. Grambow, D.M. Strachan, Scientific Basis for Nuclear Waste Management XI, 112, Materials Research Society, Pittsburgh, Pa., 1987, p. 713.

    Google Scholar 

  15. S.J. Zavoshy, P.L. Chambre, T.H. Pigford, Scientific Basis for Nuclear Waste Management VII, 44, Materials Research Society, Pittsburgh, Pa., 1985, p. 311.

    Google Scholar 

  16. P.L. Chambre, C.H. Kang, W.W.-L. Lee, T.H. Pigford, Scientific Basis for Nuclear Waste Management XI, 112, Materials Research Society, Pittsburgh, Pa., 1987, p. 285.

    Google Scholar 

  17. Materials characterization center (MCC), Final Report of the Defense High-Level Waste Leaching Mechanism Program, Pacific Northwest Laboratory, Richland, Washington, 1984.

    Google Scholar 

  18. C.N. Wilson, Scientific Basis for Nuclear Waste Management XI, 112, Materials Research Society, Pittsburgh, Pa., 1987, p. 473.

    Google Scholar 

  19. D. Rai, J.L. Ryan, Scientific Basis for Nuclear Waste Management VII, 26, Elsevier Science Publishing Co., Inc, New York, N.Y., 1984, p. 805.

    Google Scholar 

  20. B.P. McGrail, L.A. Chick, G.L. McVay, Nucl. Tech., 69 (1985) 114.

    Google Scholar 

  21. R.W. Geldart, B.P. McGrail, K.C. Rhoads, M.J. Apted, Scientific Basis for Nuclear Waste Management XI, 112, Materials Research Society, Pittsburgh, Pa., 1987, p. 341.

    Google Scholar 

  22. N.C. Garisto, F. Garisto, Ann. Nucl. Energy, 13 (1986) 591.

    Article  Google Scholar 

  23. P.L. Chambre, T.H. Pigford, W.W. Lee, J. Ahn, S. Kajiwara, C.L. Kim, H. Kimura, H. Lung, W.J. Williams, S.J. Zavoshy, LBL-19430, Lawrence Berkeley Laboratory, Berkeley, California, 1985.

    Google Scholar 

  24. M.J. Apted, A.M. Liebetrau, D.W. Engel, Waste Management '87, 2, University of Arizona, Tucson, Az., 1987, p. 545.

    Google Scholar 

  25. A.M. Liebetrau, M.J. Apted, D.W. Engel, M.K. Altenhofen, C.R. Reid, M. Strachan, R.L. Erikson, D.H. Alexander, Waste Management '87, 2, University of Arizona, Tucson, AZ., 1987, p. 535.

    Google Scholar 

  26. A. Avogadro, G. de Marsily, Scientific Basis for Nuclear Waste Management VII, 26, Elsevier Science Publishing Co., Inc, New York, N.Y., 1984, p. 495.

    Google Scholar 

  27. G. Bidoglio, A. de Plano, L. Righetto, Interactions and Transport of Plutonium-Humic Acid Particles in Groundwater Environments, Scientific Basis for Nuclear Waste Management XII, 127 Materials Research Society, Pittsburgh, Pa., 1988, p. 823.

    Google Scholar 

  28. I. Neretnieks, Scientific Basis for Nuclear Waste Management VII, 26 Elsevier Science Publishing Co., Inc, New York, N.Y., 1984, p. 1009.

    Google Scholar 

  29. I.G. McKinley, The Geochemistry of the Near-Field, Technical Report 84-48, Nagra, Baden, Switzerland, 1985.

    Google Scholar 

  30. F.T. Ewart, S.M. Sharland, P.W. Tasker, Scientific Basis for Nuclear Waste Management IX, 50 Materials Research Society, Pittsburgh, Pa., 1985, p. 539.

    Google Scholar 

  31. S.M. Sharland, P.W. Tasker, C.J. Tweed, Scientific Basis for Nuclear Waste Management X, 84 Materials Research Society, Pittsburgh, Pa., 1987, p. 683.

    Google Scholar 

  32. I. Grenthe, Scientific Basis for Nuclear Waste Management XI, 112 Materials Research Society, Pittsburgh, Pa., 1987, p. 73.

    Google Scholar 

  33. National Academy of Sciences, A Study of the Isolation System for Geological Disposal of Radioactive Wastes, National Academy Press, Washington, DC, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apted, M.J. Radionuclide release from high-level nuclear-waste packages. Journal of Radioanalytical and Nuclear Chemistry, Articles 142, 321–330 (1990). https://doi.org/10.1007/BF02039471

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02039471

Keywords

Navigation