Skip to main content

Improving the Performance of Engineering Barriers in Radioactive Waste Disposal Facilities: Role of Nano-materials

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

The last step in any radioactive waste management practice is the disposal activity which is designed to ensure isolation of these wastes under controlled conditions over extended time scale. Current designs of radioactive waste disposal facilities rely on the containment and confinement strategy through the use of multi-barrier concept in which engineering and natural barriers function to ensure long-term safe practice of the disposal activity. The main target of this work is to present the current efforts in understating the role nanoparticles in enhancing or retarding the transport of radionuclides in engineering and natural barriers. Within this context, the radioactive waste classification system and its relation to the disposal option will be introduced. The features and limitations of different disposal options will be summarized. The safety functions and the design criteria for different engineering barriers will be overviewed and the performance of different materials used in these barriers will be summarized. Recent efforts in characterizing and testing the role of natural nanoparticles either intrinsic or pseudo will be summarized. The role of synthetic nano-materials to improve the performance of cement-based wasteform will be highlighted. Finally, some concluded remarks on the required future investigations to decide on the application of synthetic nano-materials in the disposal environment will be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abdel Rahman RO, Saleh HM (2018) Introductory chapter: safety aspects in nuclear engineering. In: Abdel Rahman RO, Saleh HM (eds) Principles and applications in nuclear engineering: radiation effects, thermal hydraulics, radionuclide migration in the environment. Intechopen, London. https://doi.org/10.5772/intechopen.76818

    Chapter  Google Scholar 

  2. Abdel Rahman RO, Kozak MW, Hung Y-T (2014) Radioactive pollution and control. In: Hung YT, Wang LK, Shammas NK (eds) Handbook of environment and waste management. World Scientific Publishing Co, Singapore, pp 949–1027. https://doi.org/10.1142/9789814449175_0016

    Chapter  Google Scholar 

  3. Abdel Rahman RO, Rakhimov RZ, Rakhimova NR, Ojovan MI (2014) Cementitious materials for nuclear waste immobilization. Wiley, New York. ISBN: 9781118512005. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118512006,subjectCd-CH50.html

  4. IAEA (2009) Classification of radioactive waste: general safety guide GSG-1. IAEA, Vienna

    Google Scholar 

  5. Abdel Rahman RO, Guskov A, Kozak MW, Hung YT (2016) Recent evaluation of early radioactive disposal practice. In: Wang L, Wang MH, Hung YT, Shammas N (eds) Natural resources and control processes. Handbook of environmental engineering, vol 17. Springer, Cham, pp 371–400. https://doi.org/10.1007/978-3-319-26800-2_8

    Chapter  Google Scholar 

  6. IAEA (2019) IAEA safety glossary, terminology used in nuclear safety and radiation protection. IAEA, Vienna

    Google Scholar 

  7. Abdel Rahman RO, Ojovan MI (2016) Recent trends in the evaluation of cementitious material in radioactive waste disposal. In: Wang L, Wang MH, Hung YT, Shammas N (eds) Natural resources and control processes. Handbook of environmental engineering, vol 17. Springer, Cham, pp 401–448. https://doi.org/10.1007/978-3-319-26800-2_9

    Chapter  Google Scholar 

  8. IAEA (2001) Performance of engineered barrier materials in near surface disposal facilities for radioactive waste. IAEA-TECDOC-1255. IAEA, Vienna

    Google Scholar 

  9. Drace Z, Mele I, Ojovan MI, Abdel Rahman RO (2012) An overview of research activities on cementitious materials for radioactive waste management. Mater Res Soc Symp Proc 1475:253–264. https://doi.org/10.1557/opl.2012

    Article  Google Scholar 

  10. Reeves DM, Parashar R, Zhang Y (2012) Hydrogeologic characterization of fractured rock masses intended for disposal of radioactive waste. In: Abdel Rahman RO (ed) Radioactive waste. Intechopen, Rijeka, pp 351–372

    Google Scholar 

  11. Saanio T, Ikonen A, Keto P et al (2013) Design of the disposal facility 2012. http://www.posiva.fi/files/3400/WR_2013-17.pdf

  12. Farid OM, Ojovan MI, Massoud A, Abdel Rahman RO (2019) An assessment of initial leaching characteristics of alkali-borosilicate-glasses for nuclear waste immobilization. Materials 12:1462. https://doi.org/10.3390/ma12091462

    Article  CAS  Google Scholar 

  13. Abdel Rahman RO, El Kamash AM, Zaki AA, El Sourougy MR (2005) Disposal: a last step towards an integrated waste management system in Egypt. In: International conference on the safety of radioactive waste disposal, Tokyo, Japan, IAEA-CN-135/81, pp 317–324

    Google Scholar 

  14. Abdel Rahman RO, Ibrahim HA, Hanafy M, Abdel Monem NM (2010) Assessment of synthetic zeolite NaA-X as sorbing barrier for strontium in a radioactive disposal facility. Chem Eng J 157:100–112. https://doi.org/10.1016/j.cej.2009.10.057

    Article  CAS  Google Scholar 

  15. Abdel Rahman RO (2011) Preliminary evaluation of the technical feasibility of using different soils in waste disposal cover system. Environ Prog Sustain Energy 30(1):19–28. https://doi.org/10.1002/EP.10432

    Article  CAS  Google Scholar 

  16. IAEA (2001) Procedures and techniques for closure of near surface disposal facilities for radioactive waste. IAEA-TECDOC-1260. IAEA, Vienna

    Google Scholar 

  17. Abdel Rahman RO, Zaki AA (2020) Comparative analysis of nuclear waste solidification performance models: spent ion exchanger-cement based wasteforms. Process Saf Environ Prot 136C:115–125. https://doi.org/10.1016/j.psep.2019.12.038

    Article  CAS  Google Scholar 

  18. Farid OM, Abdel Rahman RO (2017) Preliminary assessment of modified borosilicate glasses for chromium and ruthenium immobilization. Mater Chem Phys 186:462–469

    Article  CAS  Google Scholar 

  19. El-Kamash AM, Mohamed RO, Nagy ME, Khalill MY (2002) Modeling and validation of radionuclides releases from an engineered disposal facility. Int J Waste Manage Environ Restor 22(4):373–393

    Google Scholar 

  20. Abdel Rahman RO, Ojovan MI (2014) Leaching tests and modelling of cementitious wasteforms corrosion. Innov Corros Mater Sci 4(2):90–95. https://doi.org/10.2174/2352094904666141126221626

    Article  Google Scholar 

  21. Batchelor B (2006) Overview of waste stabilization with cement. Waste Manag 26:689–698

    Article  CAS  Google Scholar 

  22. Ojovan MI, Lee WE (2005) An introduction to nuclear waste immobilisation. Elsevier Science, Amsterdam. ISBN: 0-080-44462-8

    Google Scholar 

  23. Ibrahim HA, El-Kamash AM, Hanafy M, Abdel-Monem NM (2008) Examination of the use of synthetic zeolite NaA–X blend as backfill material in a radioactive waste disposal facility: thermodynamic approach. Chem Eng J 144:67–74

    Article  CAS  Google Scholar 

  24. Felipe-Sotelo M, Hinchliff J, Field LP, Milodowski AE, Preedy O, Read D (2017) Retardation of uranium and thorium by a cementitious backfill developed for radioactive waste disposal. Chemosphere 179:127–138

    Article  CAS  Google Scholar 

  25. Chen ZG, Tang CS, Shen Z, Liu YM, Shi B (2017) The geotechnical properties of GMZ buffer/backfill material used in high-level radioactive nuclear waste geological repository: a review. Environ Earth Sci 76:270

    Article  Google Scholar 

  26. Hamed MM, Hassan RS, Metwally SS (2019) Retardation behavior of alum industrial waste for cationic and anionic radionuclides. Process Saf Environ Prot 124:31–38

    Article  CAS  Google Scholar 

  27. PNNL, development of backfill material as an engineered barrier in the waste package syste,-interim topical report, PNNL, PNL-3873/uc70. https://inis.iaea.org/collection/NCLCollectionStore/_Public/13/669/13669596.pdf

  28. Meunier A (2005) Clays. Springer, Berlin, Heidelberg

    Google Scholar 

  29. Wang H, Wu T, Chen J, Zheng Q, He C, Zhao Y (2015) Sorption of Se(IV) on Fe- and Al-modified bentonite. J Radioanal Nucl Chem 303:107–113

    Article  CAS  Google Scholar 

  30. Luengo C, Puccia V, Avena M (2011) Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. J Hazard Mater 186(2–3):1713–1719

    Article  CAS  Google Scholar 

  31. ONWI (1981) Waste package materials screening and selection. Office of nuclear waste isolation, ONWI-312. Battelle Memorial Institution, Colombia

    Google Scholar 

  32. Verstricht J, Demarche M (2001) Development of a backfill material within the Belgian concept for geological disposal of high-level radioactive waste: an example of successful international co-operation, WM’01 Conference, February 25–March 1, 2001, Tucson. https://www.wmsym.org/archives/2001/15/15-1.pdf

  33. Bamforth PB, Baston GMN, Berry JA, Glasser FP, Heath TG, Jackson CP, Savage D, Swanton SW (2012) Cement materials for use as backfill, sealing and structural materials in geological disposal concepts. A review of current status. Serco report (SERCO/005125/001 Issue 3) for NDA RWMD RP0618e252A

    Google Scholar 

  34. US Environmental Protection Agency (1989) Final closure of hazardous waste landfills and surface impoundments. Technical Guidance Document. USEPA, Washington, DC

    Google Scholar 

  35. NDA (2009) Review of the behavior of colloids in the near field of a cementitious repository, SERCO/TAS/000475/01. NDA, Harwell

    Google Scholar 

  36. Schafer T, Huber F, Seher H, Missana T, Alonso U, Kumke M, Eidner S, Claret F, Enzmann F (2012) Nanoparticles and their influence on radionuclide mobility in deep geological formations. J Appl Geochem 27:390–403

    Article  Google Scholar 

  37. Marin C (2012) Particulate phases possibly conveyed from nuclear waste repositories by groundwater. In: Abdel Rahman RO (ed) Radioactive waste. Intechopen, Rijeka, pp 431–458

    Google Scholar 

  38. Neill TS, Morris K, Pearce CI, Abrahamsen-Mills L, Kovarik L, Kellet S, Rigby B, Vitova T, Schacherl B, Shaw S (2019) Silicate stabilisation of colloidal UO2 produced by uranium metal corrosion. J Nucl Mater 526:151751

    Article  CAS  Google Scholar 

  39. Zänker H, Hennig C (2014) Colloid-borne forms of tetravalent actinides: a brief review. J Contam Hydrol 157:87–105

    Article  Google Scholar 

  40. Huber F, Kunze P, Geckeis H, Schafer T (2011) Sorption reversibility kinetics in the ternary system radionuclide–bentonite colloids/nanoparticles–granite fracture filling material. J Appl Geochem 26:2226–2237

    Article  CAS  Google Scholar 

  41. Warwick P, Allinson S, Beckett K, Eilbeck A, Fairhurst A, Russel-Flint K, Verrall K (2002) Sampling and analyses of colloids at the Drigg low level radioactive waste disposal site. J Environ Monit 4:229–234

    Article  CAS  Google Scholar 

  42. Ma B, Charlet L, Fernandez-Martinez A, Kang M, Made B (2019) A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems. J Appl Geochem 100:414–431

    Article  CAS  Google Scholar 

  43. PSI (2001) Experimental studies on the inventory of cement derived colloids in the pore water of a cementitious backfill material: a contribution to the understanding of the role in the retardation of radionuclides in the near field of a repository. Paul Scherrer Institute, Villigen

    Google Scholar 

  44. Wieland E, Tits J, Bradbury MH (2004) The potential effect of cementitious colloids on radionuclide mobilisation in a repository for radioactive waste. J Appl Geochem 19:119–135

    Article  CAS  Google Scholar 

  45. Bots P, Morris K, Hibberd R, Law GTW, Mosselmans JFW, Brown AP, Doutch J, Smith AJ, Shaw S (2014) Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal. Langmuir 30:14396–14405

    Article  CAS  Google Scholar 

  46. Mori A, Alexander WR, Geckeis H, Hauser W, Schafer T, Eikenberg J, Fierz T, Degueldre C, Missana T (2003) The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock. Colloids Surf A Physicochem Eng Asp 217:33–47

    Article  CAS  Google Scholar 

  47. Abdel Rahman RO, Ojovan MI (2017) Application of nano-materials in radioactive waste management. In: Zhang TC, Gurjar BR and Govil JN (eds) Environmental science and engineering vol: 10, Industrial processes & nanotechnology. Studium Press, LLC, pp 361–378. ISBN 10: 1-62699-098-0

    Google Scholar 

  48. Singh R, Behera M, Kumar S (2020) Nano-bioremediation: an innovative remediation technology for treatment and management of contaminated sites. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore

    Google Scholar 

  49. Furukawa Y, Kim JW, Watkins J, Wilkin RT (2002) Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ Sci Technol 36:5469–5475

    Article  CAS  Google Scholar 

  50. Morrison SJ, Metzler DR, Carpenter CE (2001) Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron. Environ Sci Technol 35:385–390

    Article  CAS  Google Scholar 

  51. Cao B, Fan S, Tan X, Li M, Hu Y (2017) Cementitious materials modified with hematite nanoparticles for enhanced cement hydration and uranium immobilization. Environ Sci Nano 4(8):1670–1681

    Article  CAS  Google Scholar 

  52. Fan S, Cao B, Deng N, Hu Y, Li M (2019) Effects of ferrihydrite nanoparticle incorporation in cementitious materials on radioactive waste immobilization. J Hazard Mater 379:120570

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Abdel Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdel Rahman, R.O., Metwally, S.S., El-Kamash, A.M. (2021). Improving the Performance of Engineering Barriers in Radioactive Waste Disposal Facilities: Role of Nano-materials. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_79

Download citation

Publish with us

Policies and ethics