Skip to main content
Log in

Carbon-13 kinetic isotope effects in the decarbonylation of liquid formic acid of natural isotopic composition initiated by phosphorus pentoxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The isotopic composition of the consecutive fractions of carbon monoxide produced in the decarbonylation of liquid formic acid of natural isotopic composition initiated by addition of phosphorus pentoxide has been measured in the temperature interval 19–100°C and the observed gradual decrease of theδ PDB values and the increase of thek 12/k 13 ratio of the isotopic specific rate constants (KIE values) for each next fraction of CO have been interpreted in terms of conclusions presented in the first paper from this series1 concerning the decarbonylation of HCOOH (F.A.) in concentrated and diluted with water phosphoric acid media. The initial fast dehydration of F.A. by phosphoric anhydride, P2O5, proceeds at room temperture with about 1% carbon-13 KIE. The (k 12/k 13) values increase with time, as the decarbonylation slows down due to the hydration of phosphorus pentoxide with water generated in dehydration of HCOOH and reach the “plateau” values characteristic for each reaction temperature. These increasing very slowly with reaction times at intermediate temperatures maximum values of (k 12/k 13) ratios are quite close to values of13C KIE observed in the decarbonylation of pure F.A. (k 12/k 13=1.0443 at 81°C). Addition of water to liquid F.A. at 90°C and at 100°C caused the further increase of the13C KIE. The detailed discussion of the13C KIE in the “HCOOH−P2O5” system has been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. ZIELIŃSKI, A. ZIELIŃSKA, H. PAPIERNIK-ZIELIŃSKA, J. Radioanal. Nucl. Chem., 183 (1994) 301.

    Google Scholar 

  2. M. ZIELIŃSKI, A. ZIELIŃSKA, H. PAPIERNIK-ZIELIŃSKA, presented in part during Royal. Soc. Chem. FRIS-94, Burgos-Spain Meeting, September 11–14, 1994.

  3. V. F. RAAEN, G. A. ROPP, H. P. RAAEN, Carbon-14, McGraw-Hill, New York, 1968.

    Google Scholar 

  4. P. G. BOWERS, K. RODES, J. Phys. Chem., 92 (1988) 2489.

    Google Scholar 

  5. G. A. ROPP, J. Am. Chem. Soc., 82 (1960) 842.

    Google Scholar 

  6. M. ZIELIŃSKI, Nucl. Appl., 2 (1966) 51.

    Google Scholar 

  7. H. CRAIG, Geochim. Cosmochim. Acta, 3 (1953) 53.

    Google Scholar 

  8. J. OESSELMAN, in: Sample Preparation and Sample Handling for Gas Mass Spectrometers, Finnigan MAT Textronica, A.G.P.O. Box 171, CH-9463, Oberriet/Switzerland, 1990/1991 issue.

  9. Y. TONG, P. E. YANKWICH, J. Phys. Chem., 61 (1957) 540.

    Google Scholar 

  10. M. ZIELIŃSKI, Isotope Effects in Chemistry, Part I, Jagiellonian University Press, Cracow, 1974, p. 11, 15, 108.

    Google Scholar 

  11. H. EYRING, F. W. CAGLE, Jr., J. Phys. Chem., 56 (1952) 889.

    Google Scholar 

  12. M. ZIELIŃSKI, Isotope Effects in Chemistry, Polish Sci. Publ., 1979, Warsaw, p. 102 and Ref. 9. H. EYRING, F. W. CAGLE, Jr., J. Phys. Chem., 56 (1952) 889.

    Google Scholar 

  13. S. Z. ROGINSKY, Theoretical Principles of Isotopic Methods of Investigation of Chemical Reactions, Akad. Nauk USSR, Moscow, 1956, p. 330.

    Google Scholar 

  14. A. FRY, L. B. SIMS, J. R. EUBANKS, T. HASAN, R. KAŃSKI, F. A. PETTIGREW, S. CROOK, in: Proc. Int. Symp. Synth. Appl. Labelled Compounds, W. P. DUNCAN, A. B. SUSAN (Eds), Elsevier, Amsterdam, 1983, p. 133–138; L. B. SIMS, D. E. LEWIS, L. T. NETHERTON, ibid in: Proc. Int. Symp. Synth. Appl. Labelled Compounds, W. P. DUNCAN, A. B. SUSAN (Eds), Elsevier, Amsterdam, 1983 p. 261–266.

    Google Scholar 

  15. P. E. YANKWICH, R. H. HASCHEMEYER J. Phys. Chem., 67 (1963) 694.

    Google Scholar 

  16. M. ZIELIŃSKI, H. PAPIERNIK-ZIELIŃSKA, A. ZIELIŃSKA, unpublished.

  17. L. P. HAMMETT, Physical Organic Chemistry, MxGraw-Hill Book Co., New York, 1940, p. 283.

    Google Scholar 

  18. A. I. GEL'BSTEIN, G. G. SHCHEGLOVA, A. I. TEMKIN, Zh. Fiz. Khim., 30 (1956) 2267.

    Google Scholar 

  19. J. MARCH, Advanced Organic Chemistry, Reactions, Mechanisms and Structures, McGraw-Hil, Inc., 1968, Polish translaton, WNT (Polish Sci. Publ.) Warsaw, 1975, p. 287, 295, 366, and Advanced Organic Chemistry, 3rd ed., Wiley, New York, 1985 and 4th ed., Wiley, New York, 1992, p. 393, 419, 542.

  20. HOUBEN-WEYL, Methoden der organischen Chemie, Band E5/Teil 1, Georg Thieme Verlag, Stuttgart-New York, 1985, p. 633.

    Google Scholar 

  21. S. PATA, Supplement B: The Chemistry of Acid Derivatives, Vol. 2, John Wiley, Chichester, 1992.

    Google Scholar 

  22. G. A. OLAH, Y. D. VANKAR, M. ARVANAGHI, J. SOMMER, Angew. Chem. Int. Engl., 18 (1979) 614.

    Google Scholar 

  23. D. E. C. CORBRIDGE, Phosphourus, 5th ed., Elsevier, Amsterdam, Lausanne, New York, Oxford, Shanou-Tokyo, 1995, p. 106, 348.

    Google Scholar 

  24. M. ZIELIŃSKI, A. ZIELIŃSKA, H. PAPIERNIK-ZIELIŃSKA, Temperature dependence of the carbon-13 isotope effect in the decarbonylation of concentrated formic acid solutions of sodium chloride and concentrated F.A. solutions of metaphosphoric acid reagent, Isotopenpraxis, submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zieliński, M., Zielińska, A. Carbon-13 kinetic isotope effects in the decarbonylation of liquid formic acid of natural isotopic composition initiated by phosphorus pentoxide. Journal of Radioanalytical and Nuclear Chemistry, Articles 198, 3–15 (1995). https://doi.org/10.1007/BF02038240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02038240

Keywords

Navigation